| 研究生: |
陳映齊 Chen, Ying-Chi |
|---|---|
| 論文名稱: |
硒化錫聲子熱電導率之非平衡態分子動力學模擬 Non-equilibrium molecular dynamics modeling of phonon thermal conductivity of SnSe tin selenide |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 共同指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 熱電材料 、逆向非平衡態分子動力學 、RNEMD 、硒化錫 |
| 外文關鍵詞: | RNEMD, NEMD, Thermoelectric material, Tin Selenide |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來人類不斷消耗石化燃料,且人類對於能源的需求不斷增加,有效的回收大量廢熱與環保、低成本且高效率的新型能源成為重要的課題。本文研究最新一代的熱電材料硒化錫,藉由分子動力學與第一原理探討硒化錫的熱電係數,以及應用之潛能。
本文採用了非平衡態分子動力學與LAMMPS軟體進行計算模擬,探討硒化錫晶體的熱導率。再以第一原理進行電子結構及性質的計算,探討硒化錫的席貝克常數、功率因子與電導率。最後計算出硒化錫的熱電優值。
研究之結果顯示,逆向非平衡態熱導率模擬比非平衡熱導率模擬還要準確。硒化錫經過逆向非平衡態分子模擬計算的熱導率為1(W/mK)左右。與其他文獻對照,本文模擬結果與其他實驗 et al.所得到的結果相近。硒化錫的熱電優值ZT大約在500K之後落在0.8以上,而現今主流的熱電材料碲化鉍在500K約落在0.5。因而證實硒化錫儼然可以取代碲化鉍成為的一個新興的熱電材料。
Recently, human beings have continuously consumed fossil fuels and the demand for energy has been increasing. Effective recycling of large amounts of waste heat and environmentally friendly, low-cost and high-efficiency new energy sources has become an important issue. In this research, we studied the latest generation of thermoelectric material tin selenium. The thermodynamic coefficient of tin selenide and the potential of application are discussed by molecular dynamics and first principle.
In this paper, non-equilibrium molecular dynamics and LAMMPS software were used to calculate the thermal conductivity of tin selenide crystals. The electronic structure and properties were calculated by the first principle, and the Seebeck constant, power factor and electron conductivity of tin selenide were discussed. Finally, the thermoelectric figure of tin selenide is calculated.
Our study show that the reverse non-equilibrium thermal conductivity simulation is more accurate than the non-equilibrium thermal conductivity simulation. The thermal conductivity of tin selenide calculated by reverse non-equilibrium molecular simulation is about 1 (W/mK). Compared with other research, the simulation results in this paper are similar to those experimental teams. The thermoelectric figure ZT of tin selenide is 0.8 after about 500K, and the currently used thermoelectric material bismuth telluride is about 0.5 at 500K. Therefore, it has been confirmed that tin selenide can replace bismuth telluride to become a new type of thermoelectric material.
Zhao, Li-Dong,et al. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals." Nature 508.7496 (2014): 373.
[2] Zhang, Chunli, et al. "Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors." ACS nano 8.4 (2014): 3761-3770.
[3] Achimovičová, Marcela, et al. "Characterization of tin selenides synthesized by high-energy milling." Acta Montanistica Slovaca 16.2 (2011): 123.
[4] Carrete, Jesús, Natalio Mingo, and Stefano Curtarolo. "Low thermal conductivity and triaxial phononic anisotropy of SnSe." Applied Physics Letters 105.10 (2014): 101907.
[5] Chen, Cheng-Lung,et al. "Thermoelectric properties of p-type polycrystalline SnSe doped with Ag." Journal of Materials Chemistry A 2.29 (2014): 11171-11176.
[6] Peng, Kunling, et al. "Broad temperature plateau for high ZT s in heavily doped p-type SnSe single crystals." Energy & Environmental Science 9.2 (2016): 454-460.
[7] Wei, Pai-Chun, et al. "The intrinsic thermal conductivity of SnSe." Nature 539.7627 (2016): E1.
[8] Zhao, Li-Dong, et al. "SnSe: a remarkable new thermoelectric material." Energy & Environmental Science 9.10 (2016): 3044-3060.
[9] Wei, Tian-Ran, et al. "Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe." Journal of the American Chemical Society 138.28 (2016): 8875-8882.
[10] Li, J. C., et al. "Enhanced thermoelectric performance of p-type SnSe doped with Zn." Scripta Materialia 126 (2017): 6-10.
[11] González-Romero, Robert L., Alex Antonelli, and Juan J. Meléndez. "Insights into the thermoelectric properties of SnSe from ab initio calculations." Physical Chemistry Chemical Physics 19.20 (2017): 12804-12815.
[12] 黃耀弘, "應用第一原理探討硒化錫摻雜對熱電優值之影響", 2016成功大學碩士論文
[13] Irving, J. H., and John G. Kirkwood. "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics." The Journal of chemical physics 18.6 (1950): 817-829.
[14] D. Frenkel and B. Smit, "Computer simulation of liquids," Academic Press: San Diego, 1991.
[15] D. C. Rapaport, "The art of molecular dynamics simulation," Cambridge 63 University Press: London, 1997.
[16] D. Frenkel and B. Smit, "Understanding molecular simulation," Academic Press: San Diego, 1996.
[17] Abrahamson, Adolf A. "Born-Mayer-type interatomic potential for neutral ground-state atoms with Z= 2 to Z= 105." Physical Review 178.1 (1969): 76.
[18] Brown, I. David. The chemical bond in inorganic chemistry: the bond valence model. Vol. 27. Oxford University Press, 2016.
[19] Allen, Michael P., and Dominic J. Tildesley. Computer simulation of liquids. Oxford university press, 2017.
[20] Gear, C.W., "Numerical initial value problems in ordinary differential equations", Prentice-Hall, Englewood Cliffs, N.J., 1971.
[21] Bussi, Giovanni, Davide Donadio, and Michele Parrinello. "Canonical sampling through velocity rescaling." The Journal of chemical physics 126.1 (2007): 014101.
[22] Hoover, William G. "Canonical dynamics: equilibrium phase-space distributions." Physical review A 31.3 (1985): 1695.
[23] Nosé, Shuichi. "A unified formulation of the constant temperature molecular dynamics methods." The Journal of chemical physics 81.1 (1984): 511-519.
[24] Berendsen, Herman JC, et al. "Molecular dynamics with coupling to an external bath." The Journal of chemical physics 81.8 (1984): 3684-3690.
[25] Rafii-Tabar, Hashem, and A. Chirazi. "Multi-scale computational modelling of solidification phenomena." Physics Reports 365.3 (2002): 145-249.
[26] Haile, J. M., et al. "Molecular dynamics simulation: elementary methods." Computers in Physics 7.6 (1993): 625-625.
[27] T. Ikeshoji and B. Hafskjold, "Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and through Liquid-Gas Interface," Molecular Physics, vol. 81, pp. 251-261, 1994.
[28] T. Dumitrica, Trends in Computational Nanomechanics: Transcending Length and Time Scales vol. 9: Springer Science & Business Media, 2010.
[29] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity," Physical Review B, vol. 65, 2002.
[30] Müller-Plathe, Florian. "A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity." The Journal of chemical physics 106.14 (1997): 6082-6085.
[31] 羅友威, "以非平衡態分子動力學研究完美及具分支構造", 2016成功大學碩士論文
[32] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, pp. 1-19, 1995.
[33] S. Plimpton, A. Thompson, P. Crozier, and A. Kohlmeyer. Lammps Www Site. Available: http://lammps.sandia.gov
[34] Chen, Yunfei,Li Deyu, Lukes Jennifer R, Ni Zhonghua and Chen Minhua, "Minimum superlattice thermal conductivity from molecular dynamics" (2005). Departmental Papers (MEAM). 65.
[35] Holland, M. G. "Analysis of lattice thermal conductivity." Physical Review 132.6 (1963): 2461.
[36] Sist, Mattia, Jiawei Zhang, and Bo Brummerstedt Iversen. "Crystal structure and phase transition of thermoelectric SnSe." Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 72.3 (2016): 310-316.
[37] Dong, Huicong, Bin Wen, and Roderick Melnik. "Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials." Scientific reports 4 (2014): 7037.
[38] Kim, Kyung Tae, Yeong Seong Eom, and Injoon Son. "Fabrication process and thermoelectric properties of CNT/Bi 2 (Se, Te) 3 composites." Journal of Nanomaterials 16.1 (2015): 83.
校內:2022-07-13公開