簡易檢索 / 詳目顯示

研究生: 黃大麟
lin, Da
論文名稱: 無風狀態飛行下之最省燃料軌跡
Minimum-Fuel Flight Trajectories Without Wind Effect
指導教授: 許棟龍
Sheu, Don-long
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 48
中文關鍵詞: 飛行力學最佳控制最省燃料軌跡參數分析法
外文關鍵詞: parameter optimality method, flight mechanics, minimum-fuel trajectory, optimal control
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在於分析民航機飛行之最省燃料軌跡,最省燃料軌跡之分析在於以Euler-Lagrange所導出之最佳化必要條件包含奇異弧(singular arc)}。
    因以數值分析方法分析奇異弧問題,尚有困難,故於研究中,係以奇攝動法的概念,設速度與飛行路徑角為快變數,將原來運動方程式降階,其目的在於消除奇異弧之問題。
    研究中發現,若將速度與飛行路徑角之兩個最佳控制條件聯立,以解兩個控制變數,則在反覆計算中無法收歛。因此,於研究中,
    乃設飛行路徑角為時間之多項式函數,以避開數值計算之敏感度問題。又因零升力阻力係數在馬赫數接近穿音速時急遽增加,馬赫數很難以最佳控制條件獲得,故在研究中係假設巡航馬赫數為常數參數,算出最佳軌跡後再變化其值,
    以求最佳馬赫數。本論文分析方法較傳統之工程方法更進一步的是,前者允許飛行途中高度變化,且高度符合端點條件;而後者若允許飛行途中高度變化,則高度無法符合端點條件,
    若欲高度符合端點條件,則飛行途中高度無法變化。

    The principal objective of this thesis is to analyze the minimum-fuel flight
    trajectory of civil aircraft. The difficulty in the analysis of minimum-fuel flight
    trajectory is that a singular arc condition is involved in
    the necessary conditions derived with the Euler-Lagrange method.
    Since it is always very difficult to analyze the singular-arc problem numerically,
    a singular perturbation concept is introduced in the analysis. By using this concept,
    the velocity and the flight path angle are assumed to be fast variables.
    As long as the zeroth-order outer solution is studied only,
    the order of original equations of motion can be reduced and the singular arc condition
    disappears. However, after a further study, it is found that if the velocity
    and the flight path angle are solved simultaneously from the two optimal control
    conditions, the two control variables are very difficult to converge.
    In order to circumvent this difficulty, the flight path angle are modeled as
    a polynomial function of the time. Also, since the zero-lift drag coefficient
    increases rapidly as the Mach number approaches in the transonic range, it is
    very difficult to compute the optimal Mach number from the optimal velocity condition.
    In this study, the Mach number is assumed to be constant and an optimal trajectory
    is determined correspondingly. The Mach number is then changed to another constant value
    and the
    optimal trajectory is determined again correspondingly. After several trajectories
    are determined, the optimal Mach number can be readily deduced. The analysis method
    in this thesis is better than that in the traditional engineering. The
    former allows the altitude to vary in between the boundary
    and to satisfy the two boundary
    conditions while the latter does not. By using the latter method,
    if the altitude is to satisfy the boundary conditions, then it can not vary with
    the time in between the boundary. However, if the altitude is to vary in between the boundary,
    then it can not satisfy the two boundary conditions.

    簽名頁 授權書 簽署人須知 摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 ix 符號表 x 一、緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究方法 3 二、運動方程式 5 2.1 座標系之定義 5 2.2 座標系統之間的轉換 5 2.3 運動方程式 7 三、運動方程式之降階 11 3.1 性能指標與最佳化之條件 13 3.2 最佳軌跡分析之數值計算敏感性 14 3.3 混合參數法 16 四、數值模擬之分析 19 4.1 馬赫數對於燃料消耗之影響 19 4.2 飛行高度對於燃料消耗之影響 24 4.3 飛行距離對於最佳馬赫數與最佳高度之影響 29 五、結論 36 參考文獻 38 附錄 41 A、大氣密度、溫度與音速 41 B、狀態變數之變分 42 C、飛機空氣動力資料 47 自述

    Athans, M. and Falb, P., Optimal Control, McGraw-Hill, New York., 1966.

    Bryson, A. E., Jr., Desai, M. N., and Hoffman, W. C.,
    Energy-State Approximation in Performance Optimization
    of Supersonic Aircraft, Journal of Aircraft, Vol.~6, No.~6, November--December 1969.

    Breitner, M. and Pesch, H.,
    Reentry Trajectory Optimization under Atmospheric Uncertainty as a Differential Game,Birkhauser, Boston,1994, pp. 70-87.

    Antonio F. B.,ARTEMIS, A Program to Identify and Map Lunar
    Resources, Final Report of the 1989 summer session,International Space University (ISU),1989.

    戴佐敏,「機隊規劃課程講義」,國立成功大學交管研究所, 2000。

    張有恆,「航空業經營與管理」,華泰書局, 2002。

    劉懋儀,「參數最佳化法應用於最省燃料軌跡之研究」,國立成功大學碩士論文, 2003。

    賴文韜,「風對於飛機在等高度飛行時,最省燃料軌跡之影響」,國立成功大學碩士論文, 2007。

    Bryson, A. E., Jr., Denham, W. F., and Dreyfus, S. E., Optimal Programming Problems with Inequality Constraints I:
    Necessary Conditions for Extremal Solutions,AIAA Journal, Vol.~1, No.~11, November 1963, pp.~2544--2550.

    Denham, W. F., and Bryson, A. E., Jr., Optimal Programming Problems with Inequality Constraints II:
    Solution by Steepest-Ascent,AIAA Journal, Vol.~2, No.~1, January 1964, pp.~25--34.

    Jacobson, D. H.,New Second-Order and First-Order Algorithms for Determining Optimal Control:
    A Differential Dynamic Programming Approach,Journal of Optimization Theory and Applications,Vol.~2, No.~6, 1968, pp.~411--440.

    Kelley, H.J., Cliff, E.M., and Visser, X.G.,Energy Mamgenent of Three-Dimensional Minimum-Time Intercept,Journal of Guidance,Control, and Dynamics,V01.10, No. 6, 1987, pp. 574-580.

    Ardema, M.D.,Linearization of the Boundary-Layer Equations of the Minimum Time-to-Climb Problem,Journal of Guidance, Control,and Dynamics,/},Vol. 2, No 5, 1979, pp. 434.436.

    Parsons, M.G., Bryson, A.E., Jr., and Hoffman, W. C.,
    Long-Range Energy-State Maneuvers for Minimum Time to Specified Terminal Conditions,11th AIM Aerospace Sciences Meeting, Washington, D.C., AIAA-1973-229, January 1973.

    Sheu, D.L.,Minimum-Time Flight Paths of Supersonic Aircraft,Ph.D. Dissertation, The University of Michigan, Ann Arbor, Michigan, USA,1992.

    何旅良,「應用二階坡度法結合攝動法以解最短時間飛行問題」,國立成功大學碩士論文, 1996。

    Ardema, M. D.,Solution of the Minimum Time-to-Climb Problem
    by Matched Asymptotic Expansions,AIAA Journal, Vol.~14, No.~7, July 1976, pp.~843--850.

    Ardema, M. D.,Linearization of the Boundary-Layer Equations of the Minimum Time-to-Climb Problem,Journal of Guidance and Control, Vol.~2, No.~5, September--October 1979, pp.~434--436.

    Clements, J. C.,Minimum-Time Tune Trajectories to Fly-to-Points,Optimal Control Applications and Methods, Vol.~11, No.~1, January--March 1990, pp.~39--50.

    Seywald, H.,Optimal and Suboptimal Minimum Time-to-Climb Trajectories, AIAA Guidance, Navigation and Control Conference, Scottsdale, AZ, August 1--3, 1994, pp.~130--136.

    U.S. Standard Atmosphere, 1976,National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, Washington, DC, U.S.A., 1976.

    下載圖示 校內:立即公開
    校外:2008-07-09公開
    QR CODE