簡易檢索 / 詳目顯示

研究生: 李綱
Lee, Gang
論文名稱: 氧化鉬-硫化鉬核殼奈米線之製備及物理性質之研究
Study on the Fabrication and Physical Properties of Molybdenum Oxide-Molybdenum Disulfide Core-Shell Nanowires
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 氧化鉬硫化鉬奈米線電阻率光催化
外文關鍵詞: molybdenum oxide, molybdenum disulfide, nanowire, resistivity, photocatalysis
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用三區爐管以熱蒸鍍法製備形貌優異的氧化鉬奈米線,第二階段以化學氣相沉積法將氧化鉬奈米線硫化,製備出氧化鉬-硫化鉬核殼奈米線。將兩種奈米線以SEM、XRD、TEM、EDS、XPS觀察形貌以及分析晶相,確認本實驗所合成之奈米線皆含有氧空缺。第三階段將兩種奈米線做電性以及光催化實驗,將其與文獻做比較。電性量測發現氧化鉬奈米線電阻率為6.3*10-7 Ω-m,低於文獻值,推測為氧空缺的形成導致電性的提升;氧化鉬-硫化鉬核殼奈米線的電阻率為1.65*10-4Ω-m,大於文獻值,推測是核殼結構造成整體載子濃度下降且S2-原子佔據氧空缺,使氧空缺數量下降。光降解性質量測發現氧化鉬奈米線在可見光照射60分鐘得降解效率為22%,相較完整化學量比的三氧化鉬晶體效率高;氧化鉬-硫化鉬核殼奈米線在可見光照射60分鐘的降解效率為34%,相較文獻中對二氧化鉬要透過紫外光才能進行降解,且降解效率僅有22%,因此以上性質顯示兩種奈米線在光電元件有發展的潛力。

    In this experiment, a three-zone furnace tube was used to prepare molybdenum oxide (MoO3-x) nanowires by thermal evaporation. In the second part, MoO3-x nanowires were sulfurized to molybdenum disulfide (MoS2) to synthesis MoO2-MoS2 core-shell nanowires via chemical vapor deposition (CVD). The morphology and phase of two kinds of nanowires were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and it was confirmed that the nanowires synthesized in this experiment contained oxygen vacancies. Photodegradation studies show that under visible light irradiation for 60 mins, the degradation efficiency of the MoO3-x nanowires was 22%, higher than that of the MoO3 crystals in previous reports, while the degradation efficiency of MoO2-MoS2 core-shell nanowires was 34%, higher than that of MoO2 nanoparticles in previous works. Additionally, the resistivities of a MoO3-x nanowire and a MoO2-MoS2 core-shell nanowire were measured to be 6.3*10-7 Ω-m and 7*10-4 Ω-m, respectively. The results show that the two types of nanowires have potential in electronic devices, sensors, solar cells, chromic devices and photocatalyst in the future.

    摘要 I Extended Abstract II 致謝 VI 圖目錄 XI 表目錄 XIV 第一章、緒論 1 1.1前言 1 1.2研究動機 1 第二章、理論基礎與文獻回顧 3 2.1奈米科技 3 2.2奈米材料 3 2.2.1表面效應 4 2.2.2小尺寸效應(Small Scale Effect) 4 2.2.3量子尺寸效應(Quantum scale effect) 4 2.2.4巨觀量子穿隧效應(Macroscopic Quantum Tunneling Effect) 5 2.3氧化鉬材料特性及性質 6 2.4氧化鉬一維結構合成方法 9 2.4.1 物理氣相沉積法(Physical Vapor Deposition, PVD) 9 2.4.2 電極沉積法(Electrodeposition) 10 2.4.3 水熱法(Hydrothermal method) 11 2.4.4 化學氣相沉積法(Chemical vapor deposition, CVD) 12 2.5氧化鉬奈米線應用 13 2.5.1光催化 13 2.5.2 電性質 13 2.6二硫化鉬材料性質及應用 14 第三章、實驗方法 16 3.1實驗大綱 16 3.2基板材料 17 3.3使用藥品 17 3.4實驗流程 18 3.4.1試片前處理 18 3.4.2氧化鉬奈米線的製備 18 3.4.2.1反應前驅物及試片 19 3.4.2.2實驗條件 19 3.4.3 氧化鉬-硫化鉬核殼奈米線成長製備 21 3.4.3.1反應前驅物及試片 21 3.4.3.2實驗條件 22 3.4.4電性量測試片製作 24 3.4.4.1電極蒸鍍 24 3.4.4.2單根奈米線分離 24 3.4.4.3連接奈米線與電極 25 3.4.5電性實驗 26 3.4.5.1量測方法 27 3.4.5.2電阻率計算 28 3.4.6光降解實驗 30 3.5實驗設備及性質結構分析儀器設備 31 3.5.1氣氛退火系統(Atmosphere annealing system) 31 3.5.2電子束蒸鍍系統(E-beam evaporation system) 32 3.5.3雙束型聚焦離子束系統(Dual-Beam Focused Ion Beam) 32 3.5.4X光繞射分析儀(X-ray Diffractometer, XRD) 32 3.5.5掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 34 3.5.6穿透式電子顯微鏡(Transmission electron microscopy, TEM) 35 3.5.7紫外光-可見光分光光譜儀(UV-Vis spectrophotometer) 37 3.5.8電性量測系統(Multi-probes electric measurement system) 37 3.5.9化學分析電子儀(Electron Spectroscopy for Chemical Analysis, ESCA) 38 3.5.10光降解設備 39 第四章、結果與討論 40 4.1 氧化鉬奈米線合成及分析 40 4.1.1 溫度對於形貌的影響 40 4.1.2 持溫時間對於形貌的影響 43 4.1.3 壓力對於形貌的影響 46 4.1.4 前驅物量對於形貌的影響 49 4.1.5 氣體流量對於形貌的影響 51 4.1.6 最佳參數 53 4.1.7 生長機制探討 55 4.1.8 結構分析與鑑定 57 4.2 氧化鉬-硫化鉬核殼奈米線合成與分析 61 4.2.1 生長機制探討 64 4.2.2 結構分析與鑑定 65 4.3 奈米線和核殼奈米線之性質量測與分析 72 4.3.1 電性量測 72 4.3.2 光降解性質量測 77 第五章、結論 84 第六章、參考文獻 85

    [1] 賴炤銘 and 李. J. C. C. Soc, "奈米材料的特殊效應與應用," vol. 61, pp. 585-597, 2003.
    [2] R. J. J. o. t. P. S. o. J. Kubo, "Electronic properties of metallic fine particles. I," vol. 17, no. 6, pp. 975-986, 1962.
    [3] Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y.-S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. J. N. l. Stucky, "Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity," vol. 9, no. 12, pp. 4215-4220, 2009.
    [4] O. Marin-Flores, T. Turba, C. Ellefson, K. Wang, J. Breit, J. Ahn, M. G. Norton, and S. Ha, "Nanoparticle molybdenum dioxide: A highly active catalyst for partial oxidation of aviation fuels," Applied Catalysis B: Environmental, vol. 98, no. 3-4, pp. 186-192, 2010.
    [5] E. Lalik, W. I. David, P. Barnes, and J. F. J. T. J. o. P. C. B. Turner, "Mechanisms of reduction of MoO3 to MoO2 reconciled?," vol. 105, no. 38, pp. 9153-9156, 2001.
    [6] I. A. de Castro, R. S. Datta, J. Z. Ou, A. Castellanos‐Gomez, S. Sriram, T. Daeneke, and K. J. A. M. Kalantar‐zadeh, "Molybdenum oxides–from fundamentals to functionality," vol. 29, no. 40, p. 1701619, 2017.
    [7] K. Hong, M. An, R. Song, L. Liu, and M. Xu, "Vapour phase synthesis of aligned molybdenum oxide nanowires at low temperature," physica status solidi (RRL) - Rapid Research Letters, vol. 6, no. 2, pp. 86-88, 2012.
    [8] M. P. Zach, K. H. Ng, and R. M. J. S. Penner, "Molybdenum nanowires by electrodeposition," vol. 290, no. 5499, pp. 2120-2123, 2000.
    [9] T. Xia, Q. Li, X. Liu, J. Meng, and X. J. T. J. o. P. C. B. Cao, "Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide," vol. 110, no. 5, pp. 2006-2012, 2006.
    [10] B. B. Wang, K. Zhu, J. Feng, J. Y. Wu, R. W. Shao, K. Zheng, and Q. J. Cheng, "Low-pressure thermal chemical vapour deposition of molybdenum oxide nanorods," Journal of Alloys and Compounds, vol. 661, pp. 66-71, 2016.
    [11] Q. Liu, Y. Wu, J. Zhang, K. Chen, C. Huang, H. Chen, and X. Qiu, "Plasmonic MoO3-x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst," Applied Surface Science, vol. 490, pp. 395-402, 2019.
    [12] M. Yang, L. Zhang, B. Jin, L. Huang, and Y. Gan, "Enhanced photoelectrochemical properties and water splitting activity of self-ordered MoO3-TiO2 nanotubes," Applied Surface Science, vol. 364, pp. 410-415, 2016.
    [13] H. Liu, T. Lv, C. Zhu, Z. J. S. E. M. Zhu, and S. Cells, "Direct bandgap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity," vol. 153, pp. 1-8, 2016.
    [14] M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, "From MoS2Microspheres to α-MoO3Nanoplates: Growth Mechanism and Photocatalytic Activities," European Journal of Inorganic Chemistry, vol. 2014, no. 20, pp. 3245-3251, 2014.
    [15] Q. Huang, S. Hu, J. Zhuang, and X. Wang, "MoO(3-x)-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes," Chemistry, vol. 18, no. 48, pp. 15283-7, Nov 26 2012.
    [16] M. M. Y. A. Alsaif, A. F. Chrimes, T. Daeneke, S. Balendhran, D. O. Bellisario, Y. Son, M. R. Field, W. Zhang, H. Nili, E. P. Nguyen, K. Latham, J. van Embden, M. S. Strano, J. Z. Ou, and K. Kalantar-zadeh, "High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes," Advanced Functional Materials, vol. 26, no. 1, pp. 91-100, 2016.
    [17] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, "Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties," Advanced Materials, vol. 15, no. 21, pp. 1835-1840, 2003.
    [18] Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, "Field emission from MoO3 nanobelts," Applied Physics Letters, vol. 81, no. 26, pp. 5048-5050, 2002.
    [19] S. Kumari, A. Chouhan, O. P. Sharma, S. Kuriakose, S. A. Tawfik, M. J. S. Spencer, S. Walia, H. Sugimura, and O. P. Khatri, "Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS2 and Its Potential for Enhancement of Tribological Properties," ACS Appl Mater Interfaces, vol. 12, no. 27, pp. 30720-30730, Jul 8 2020.
    [20] V. Dusheiko and M. J. J. o. p. s. Lipkin, "Synthesis of sulfide cathodic materials and study of their physicochemical properties and electrochemical activity," vol. 54, no. 2, pp. 264-267, 1995.
    [21] S. Wang, C. An, and J. Yuan, "Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides," Materials, vol. 3, no. 1, pp. 401-433, 2010.
    [22] T. Pecoraro and R. J. J. o. C. Chianelli, "Hydrodesulfurization catalysis by transition metal sulfides," vol. 67, no. 2, pp. 430-445, 1981.
    [23] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011.
    [24] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. J. N. l. Jaramillo, "Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials," vol. 11, no. 10, pp. 4168-4175, 2011.
    [25] W. Gu, H. Choi, and K. J. A. p. l. Kim, "Universal approach to accurate resistivity measurement for a single nanowire: Theory and application," vol. 89, no. 25, p. 253102, 2006.
    [26] Y.-H. Ting, C.-W. Huang, A. Yasuhara, S.-Y. Chen, J.-Y. Chen, L. Chang, K.-C. Lu, and W.-W. J. N. l. Wu, "Atomic Imaging of Molybdenum Oxide Nanowires with Unique and Complex Periodicity by Advanced Electron Microscopy," vol. 20, no. 3, pp. 1510-1516, 2019.
    [27] K. Hong, M. An, R. Song, L. Liu, and M. J. p. s. s. R. R. L. Xu, "Vapour phase synthesis of aligned molybdenum oxide nanowires at low temperature," vol. 6, no. 2, pp. 86-88, 2012.
    [28] J. Zhou, S. Deng, N. Xu, J. Chen, and J. J. A. p. l. She, "Synthesis and field-emission properties of aligned MoO 3 nanowires," vol. 83, no. 13, pp. 2653-2655, 2003.
    [29] P. Allen, L. Cai, L. Zhou, C. Zhao, and P. M. J. S. r. Rao, "Rapid Synthesis of Thin and Long Mo 17 O 47 Nanowire-Arrays in an Oxygen Deficient Flame," vol. 6, no. 1, pp. 1-11, 2016.
    [30] M. Ponce-Mosso, M. Pérez-González, P. E. García-Tinoco, H. Crotte-Ledesma, M. Morales-Luna, and S. A. Tomás, "Enhanced photocatalytic activity of amorphous MoO 3 thin films deposited by rf reactive magnetron sputtering," Catalysis Today, 2018.
    [31] S. Bai, C. Chen, Y. Tian, S. Chen, R. Luo, D. Li, A. Chen, and C. C. Liu, "Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance," Materials Research Bulletin, vol. 64, pp. 252-256, 2015.
    [32] R. Ding, Y. Wu, Y. Chen, H. Chen, J. Wang, Y. Shi, M. J. C. S. Yang, and Technology, "Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO 2/CNTs catalyst: an insight into the promoting effect of cobalt," vol. 6, no. 7, pp. 2065-2076, 2016.
    [33] L. Q. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai, and Z. L. J. A. M. Wang, "Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries," vol. 19, no. 21, pp. 3712-3716, 2007.
    [34] V. Bhosle, A. Tiwari, and J. J. J. o. a. p. Narayan, "Epitaxial growth and properties of Mo O x (2< x< 2.75) films," vol. 97, no. 8, p. 083539, 2005.
    [35] H. Ali, E. K. Shokr, S. A. Elkot, and W. J. M. R. E. Mohamed, "Promising molybdenum trioxide films for optically detectable gas sensor and solar cell applications," vol. 6, no. 12, p. 126451, 2020.
    [36] N. Miyata, T. Suzuki, and R. J. T. S. F. Ohyama, "Physical properties of evaporated molybdenum oxide films," vol. 281, pp. 218-222, 1996.
    [37] S. Subbarayudu, K. V. S. Reddy, and S. J. M. S.-P. Uthanna, "Sputtering pressure influenced structural, electrical and optical properties of RF magnetron sputtered MoO3 films," vol. 38, no. 1, pp. 41-47, 2020.
    [38] D. Wu, Y. Yang, P. Zhu, X. Zheng, X. Chen, J. Shi, F. Song, X. Gao, X. Zhang, and F. J. T. J. o. P. C. C. Ouyang, "Epitaxial growth of highly oriented metallic MoO2@ MoS2 nanorods on C-sapphire," vol. 122, no. 3, pp. 1860-1866, 2018.
    [39] Z. Xiang, Q. Zhang, Z. Zhang, X. Xu, and Q. J. C. I. Wang, "Preparation and photoelectric properties of semiconductor MoO2 micro/nanospheres with wide bandgap," vol. 41, no. 1, pp. 977-981, 2015.
    [40] B. Hu, L. Mai, W. Chen, and F. J. A. N. Yang, "From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport," vol. 3, no. 2, pp. 478-482, 2009.
    [41] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. J. A. A. Miao, "Ultrathin MoO2 nanosheets with good thermal stability and high conductivity," vol. 7, no. 2, p. 025015, 2017.
    [42] L. M. Vogl, P. Schweizer, M. Wu, and E. J. N. Spiecker, "Transforming layered MoS 2 into functional MoO 2 nanowires," vol. 11, no. 24, pp. 11687-11695, 2019.
    [43] L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, and H. J. A. s. s. Li, "Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity," vol. 283, pp. 25-32, 2013.
    [44] E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. Liu, and X. J. C. I. Xu, "Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts," vol. 42, no. 2, pp. 2198-2203, 2016.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE