| 研究生: |
李綱 Lee, Gang |
|---|---|
| 論文名稱: |
氧化鉬-硫化鉬核殼奈米線之製備及物理性質之研究 Study on the Fabrication and Physical Properties of Molybdenum Oxide-Molybdenum Disulfide Core-Shell Nanowires |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 氧化鉬 、硫化鉬 、奈米線 、電阻率 、光催化 |
| 外文關鍵詞: | molybdenum oxide, molybdenum disulfide, nanowire, resistivity, photocatalysis |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用三區爐管以熱蒸鍍法製備形貌優異的氧化鉬奈米線,第二階段以化學氣相沉積法將氧化鉬奈米線硫化,製備出氧化鉬-硫化鉬核殼奈米線。將兩種奈米線以SEM、XRD、TEM、EDS、XPS觀察形貌以及分析晶相,確認本實驗所合成之奈米線皆含有氧空缺。第三階段將兩種奈米線做電性以及光催化實驗,將其與文獻做比較。電性量測發現氧化鉬奈米線電阻率為6.3*10-7 Ω-m,低於文獻值,推測為氧空缺的形成導致電性的提升;氧化鉬-硫化鉬核殼奈米線的電阻率為1.65*10-4Ω-m,大於文獻值,推測是核殼結構造成整體載子濃度下降且S2-原子佔據氧空缺,使氧空缺數量下降。光降解性質量測發現氧化鉬奈米線在可見光照射60分鐘得降解效率為22%,相較完整化學量比的三氧化鉬晶體效率高;氧化鉬-硫化鉬核殼奈米線在可見光照射60分鐘的降解效率為34%,相較文獻中對二氧化鉬要透過紫外光才能進行降解,且降解效率僅有22%,因此以上性質顯示兩種奈米線在光電元件有發展的潛力。
In this experiment, a three-zone furnace tube was used to prepare molybdenum oxide (MoO3-x) nanowires by thermal evaporation. In the second part, MoO3-x nanowires were sulfurized to molybdenum disulfide (MoS2) to synthesis MoO2-MoS2 core-shell nanowires via chemical vapor deposition (CVD). The morphology and phase of two kinds of nanowires were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and it was confirmed that the nanowires synthesized in this experiment contained oxygen vacancies. Photodegradation studies show that under visible light irradiation for 60 mins, the degradation efficiency of the MoO3-x nanowires was 22%, higher than that of the MoO3 crystals in previous reports, while the degradation efficiency of MoO2-MoS2 core-shell nanowires was 34%, higher than that of MoO2 nanoparticles in previous works. Additionally, the resistivities of a MoO3-x nanowire and a MoO2-MoS2 core-shell nanowire were measured to be 6.3*10-7 Ω-m and 7*10-4 Ω-m, respectively. The results show that the two types of nanowires have potential in electronic devices, sensors, solar cells, chromic devices and photocatalyst in the future.
[1] 賴炤銘 and 李. J. C. C. Soc, "奈米材料的特殊效應與應用," vol. 61, pp. 585-597, 2003.
[2] R. J. J. o. t. P. S. o. J. Kubo, "Electronic properties of metallic fine particles. I," vol. 17, no. 6, pp. 975-986, 1962.
[3] Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y.-S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. J. N. l. Stucky, "Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity," vol. 9, no. 12, pp. 4215-4220, 2009.
[4] O. Marin-Flores, T. Turba, C. Ellefson, K. Wang, J. Breit, J. Ahn, M. G. Norton, and S. Ha, "Nanoparticle molybdenum dioxide: A highly active catalyst for partial oxidation of aviation fuels," Applied Catalysis B: Environmental, vol. 98, no. 3-4, pp. 186-192, 2010.
[5] E. Lalik, W. I. David, P. Barnes, and J. F. J. T. J. o. P. C. B. Turner, "Mechanisms of reduction of MoO3 to MoO2 reconciled?," vol. 105, no. 38, pp. 9153-9156, 2001.
[6] I. A. de Castro, R. S. Datta, J. Z. Ou, A. Castellanos‐Gomez, S. Sriram, T. Daeneke, and K. J. A. M. Kalantar‐zadeh, "Molybdenum oxides–from fundamentals to functionality," vol. 29, no. 40, p. 1701619, 2017.
[7] K. Hong, M. An, R. Song, L. Liu, and M. Xu, "Vapour phase synthesis of aligned molybdenum oxide nanowires at low temperature," physica status solidi (RRL) - Rapid Research Letters, vol. 6, no. 2, pp. 86-88, 2012.
[8] M. P. Zach, K. H. Ng, and R. M. J. S. Penner, "Molybdenum nanowires by electrodeposition," vol. 290, no. 5499, pp. 2120-2123, 2000.
[9] T. Xia, Q. Li, X. Liu, J. Meng, and X. J. T. J. o. P. C. B. Cao, "Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide," vol. 110, no. 5, pp. 2006-2012, 2006.
[10] B. B. Wang, K. Zhu, J. Feng, J. Y. Wu, R. W. Shao, K. Zheng, and Q. J. Cheng, "Low-pressure thermal chemical vapour deposition of molybdenum oxide nanorods," Journal of Alloys and Compounds, vol. 661, pp. 66-71, 2016.
[11] Q. Liu, Y. Wu, J. Zhang, K. Chen, C. Huang, H. Chen, and X. Qiu, "Plasmonic MoO3-x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst," Applied Surface Science, vol. 490, pp. 395-402, 2019.
[12] M. Yang, L. Zhang, B. Jin, L. Huang, and Y. Gan, "Enhanced photoelectrochemical properties and water splitting activity of self-ordered MoO3-TiO2 nanotubes," Applied Surface Science, vol. 364, pp. 410-415, 2016.
[13] H. Liu, T. Lv, C. Zhu, Z. J. S. E. M. Zhu, and S. Cells, "Direct bandgap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity," vol. 153, pp. 1-8, 2016.
[14] M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, "From MoS2Microspheres to α-MoO3Nanoplates: Growth Mechanism and Photocatalytic Activities," European Journal of Inorganic Chemistry, vol. 2014, no. 20, pp. 3245-3251, 2014.
[15] Q. Huang, S. Hu, J. Zhuang, and X. Wang, "MoO(3-x)-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes," Chemistry, vol. 18, no. 48, pp. 15283-7, Nov 26 2012.
[16] M. M. Y. A. Alsaif, A. F. Chrimes, T. Daeneke, S. Balendhran, D. O. Bellisario, Y. Son, M. R. Field, W. Zhang, H. Nili, E. P. Nguyen, K. Latham, J. van Embden, M. S. Strano, J. Z. Ou, and K. Kalantar-zadeh, "High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes," Advanced Functional Materials, vol. 26, no. 1, pp. 91-100, 2016.
[17] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, "Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties," Advanced Materials, vol. 15, no. 21, pp. 1835-1840, 2003.
[18] Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, "Field emission from MoO3 nanobelts," Applied Physics Letters, vol. 81, no. 26, pp. 5048-5050, 2002.
[19] S. Kumari, A. Chouhan, O. P. Sharma, S. Kuriakose, S. A. Tawfik, M. J. S. Spencer, S. Walia, H. Sugimura, and O. P. Khatri, "Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS2 and Its Potential for Enhancement of Tribological Properties," ACS Appl Mater Interfaces, vol. 12, no. 27, pp. 30720-30730, Jul 8 2020.
[20] V. Dusheiko and M. J. J. o. p. s. Lipkin, "Synthesis of sulfide cathodic materials and study of their physicochemical properties and electrochemical activity," vol. 54, no. 2, pp. 264-267, 1995.
[21] S. Wang, C. An, and J. Yuan, "Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides," Materials, vol. 3, no. 1, pp. 401-433, 2010.
[22] T. Pecoraro and R. J. J. o. C. Chianelli, "Hydrodesulfurization catalysis by transition metal sulfides," vol. 67, no. 2, pp. 430-445, 1981.
[23] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011.
[24] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. J. N. l. Jaramillo, "Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials," vol. 11, no. 10, pp. 4168-4175, 2011.
[25] W. Gu, H. Choi, and K. J. A. p. l. Kim, "Universal approach to accurate resistivity measurement for a single nanowire: Theory and application," vol. 89, no. 25, p. 253102, 2006.
[26] Y.-H. Ting, C.-W. Huang, A. Yasuhara, S.-Y. Chen, J.-Y. Chen, L. Chang, K.-C. Lu, and W.-W. J. N. l. Wu, "Atomic Imaging of Molybdenum Oxide Nanowires with Unique and Complex Periodicity by Advanced Electron Microscopy," vol. 20, no. 3, pp. 1510-1516, 2019.
[27] K. Hong, M. An, R. Song, L. Liu, and M. J. p. s. s. R. R. L. Xu, "Vapour phase synthesis of aligned molybdenum oxide nanowires at low temperature," vol. 6, no. 2, pp. 86-88, 2012.
[28] J. Zhou, S. Deng, N. Xu, J. Chen, and J. J. A. p. l. She, "Synthesis and field-emission properties of aligned MoO 3 nanowires," vol. 83, no. 13, pp. 2653-2655, 2003.
[29] P. Allen, L. Cai, L. Zhou, C. Zhao, and P. M. J. S. r. Rao, "Rapid Synthesis of Thin and Long Mo 17 O 47 Nanowire-Arrays in an Oxygen Deficient Flame," vol. 6, no. 1, pp. 1-11, 2016.
[30] M. Ponce-Mosso, M. Pérez-González, P. E. García-Tinoco, H. Crotte-Ledesma, M. Morales-Luna, and S. A. Tomás, "Enhanced photocatalytic activity of amorphous MoO 3 thin films deposited by rf reactive magnetron sputtering," Catalysis Today, 2018.
[31] S. Bai, C. Chen, Y. Tian, S. Chen, R. Luo, D. Li, A. Chen, and C. C. Liu, "Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance," Materials Research Bulletin, vol. 64, pp. 252-256, 2015.
[32] R. Ding, Y. Wu, Y. Chen, H. Chen, J. Wang, Y. Shi, M. J. C. S. Yang, and Technology, "Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO 2/CNTs catalyst: an insight into the promoting effect of cobalt," vol. 6, no. 7, pp. 2065-2076, 2016.
[33] L. Q. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai, and Z. L. J. A. M. Wang, "Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries," vol. 19, no. 21, pp. 3712-3716, 2007.
[34] V. Bhosle, A. Tiwari, and J. J. J. o. a. p. Narayan, "Epitaxial growth and properties of Mo O x (2< x< 2.75) films," vol. 97, no. 8, p. 083539, 2005.
[35] H. Ali, E. K. Shokr, S. A. Elkot, and W. J. M. R. E. Mohamed, "Promising molybdenum trioxide films for optically detectable gas sensor and solar cell applications," vol. 6, no. 12, p. 126451, 2020.
[36] N. Miyata, T. Suzuki, and R. J. T. S. F. Ohyama, "Physical properties of evaporated molybdenum oxide films," vol. 281, pp. 218-222, 1996.
[37] S. Subbarayudu, K. V. S. Reddy, and S. J. M. S.-P. Uthanna, "Sputtering pressure influenced structural, electrical and optical properties of RF magnetron sputtered MoO3 films," vol. 38, no. 1, pp. 41-47, 2020.
[38] D. Wu, Y. Yang, P. Zhu, X. Zheng, X. Chen, J. Shi, F. Song, X. Gao, X. Zhang, and F. J. T. J. o. P. C. C. Ouyang, "Epitaxial growth of highly oriented metallic MoO2@ MoS2 nanorods on C-sapphire," vol. 122, no. 3, pp. 1860-1866, 2018.
[39] Z. Xiang, Q. Zhang, Z. Zhang, X. Xu, and Q. J. C. I. Wang, "Preparation and photoelectric properties of semiconductor MoO2 micro/nanospheres with wide bandgap," vol. 41, no. 1, pp. 977-981, 2015.
[40] B. Hu, L. Mai, W. Chen, and F. J. A. N. Yang, "From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport," vol. 3, no. 2, pp. 478-482, 2009.
[41] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. J. A. A. Miao, "Ultrathin MoO2 nanosheets with good thermal stability and high conductivity," vol. 7, no. 2, p. 025015, 2017.
[42] L. M. Vogl, P. Schweizer, M. Wu, and E. J. N. Spiecker, "Transforming layered MoS 2 into functional MoO 2 nanowires," vol. 11, no. 24, pp. 11687-11695, 2019.
[43] L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, and H. J. A. s. s. Li, "Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity," vol. 283, pp. 25-32, 2013.
[44] E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. Liu, and X. J. C. I. Xu, "Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts," vol. 42, no. 2, pp. 2198-2203, 2016.
校內:2025-09-01公開