簡易檢索 / 詳目顯示

研究生: 謝秉倫
Hsieh, Ping-Lun
論文名稱: 醣與硫辛酸修飾聚賴胺酸與聚丙烯酸自組裝之還原及酸鹼應答複合高分子
Redox- and pH-responsive complex micelles assembled from saccharide- and lipoic acid-modified poly(L-lysine) and poly(acrylic acid)
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 雙環境應答聚胺基酸聚電解質複合粒子藥物傳輸醣修飾
外文關鍵詞: dual-response, polypeptide, polyelectrolyte, complex particles, galactose
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備對酸鹼值與還原環境應答,且具有細胞標靶功能的聚電解質複合 (polyelectrolyte complex) (PEC) 粒子,組成PEC粒子的聚電解質分別為:帶正電的醣修飾聚賴胺酸接枝硫辛酸(lactobionolatone modified poly(L-lysine)-graft-lipoic acid) (PLL-g-Lipo-g-Lac)與負電的聚丙烯酸(poly (acrylic acid)) (PAA),混合形成PEC粒子帶電外層由過量的聚電解質與雙醣基團組成,其中PLL-g-Lipo-g-Lac是由具保護基的賴胺酸形成N-carboxyanhydrides (NCAs)經開環聚合(ring-opening polymerization) (ROP)合成poly(Z-L-lysine) (PZLL),PZLL去除保護基後經過硫辛酸修飾與醣修飾後得到PLL-g-Lipo-g-Lac,不同分子量PLL與硫辛酸和醣接枝的比例則由超導核磁共振光譜儀(Nuclear Magnetic Resonance Spectrophotometer)(NMR)鑑定,不同溶液條件下製得PEC粒子的粒徑、Zeta-potential、形態與結構,分別由動態光散射分析儀(dynamic light scattering) (DLS)、Zeta 電位分析儀、穿透式電子顯微鏡(transmission electron microscopy) (TEM) 與圓二色光譜儀(circular dichroism) (CD)分析。藉由調控組成的聚電解質比例、分子量與接枝比例,PEC粒子可以帶有正或負的不同電性,形成的粒徑在50到200奈米之間。實驗結果顯示,PEC粒子能對環境的酸鹼度與還原特性做出應答,藉由加入具專一性的凝集素與PEC粒子外層的醣基結合,證明PEC粒子具有生物辨識功能,再配合PEC具有的雙環境應答功能,,這些PEC粒子具有應用藥物傳輸與標靶治療等生醫領域的潛力。

    In this study, novel pH and redox-responsive, cellular targeting polyelectrolyte complex (PEC) particles were developed. By mixing the polycation and polyanion, lactobionolatone modified poly(L-lysine)-graft-lipoic acid (PLL-g-Lipo-g-Lac) and poly acrylic acid (PAA), PEC particles can be formed with excess polyelectrolyte and saccharide group on the corona. PLL polypeptides were prepared by synthesizing poly(Z-L-lysine) (PZLL) via ring-opening polymerization (ROP) from Z-L-lysine N-carboxyanhydrides (NCAs) and subsequently removing the protecting Z group. PLL-g-Lipo-g-Lac graft copolypeptides with different polypeptide chain lengths and grafting degrees of lipoic acid were synthesized. The grafting degrees of lipoic acid and saccharide group were determined by Nuclear Magnetic Resonance Spectrophotometer (NMR). The size, charge, chain conformation, and morphology of the as-prepared PEC particles at different solution conditions were characterized by dynamic light scattering (DLS), aqueous electrophoresis, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. The positively and negatively charged PEC particles with size ranged between 50 and 200 nm can be prepared by varying polymer chain length, grafting degree, and composition. The experimental data revealed that these PEC particles can response to the pH and oxidation/reduction changes in the environment. The selective lectin binding experiments confirmed that the galactose units on the particles can be used in biorecognition applications. Combining their dual-response and liver cell targeting ability, these PEC particles could be useful in biomedical fields such as drug delivery.

    總目錄 第一章 緒論 1 第二章 文獻回顧 3 2.1 聚胺基酸 3 2.1.1 聚胺基酸的結構與特性 3 2.1.2 胺基酸的聚合 9 2.2 雙親性高分子自組裝 13 2.2.1 自組裝行為介紹 13 2.2.2 自組裝高分子介紹 14 2.3 奈米粒子藥物載體 16 2.3.1 聚胺基酸做為藥物載體 18 2.3.2 奈米粒子藥物載體的設計 19 2.4 環境應答 21 2.4.1 酸鹼應答 21 2.4.2 溫度應答 23 2.4.3 還原應答 23 2.5 聚電解質複合材料 24 2.6 雙功能性應答系統 25 第三章 實驗方法與步驟 27 3.1 實驗藥品 27 3.2 實驗儀器與原理 29 3.2.1 凝膠滲透層析儀 29 3.2.2 核磁共振光譜儀 30 3.2.3 動態光散射偵測儀 31 3.2.4 Zeta電位分析儀 33 3.2.5 圓二色光譜儀 34 3.2.6 紫外線/可見光光譜儀 36 3.2.7 穿透式電子顯微鏡 36 3.3 實驗方法 37 3.3.1 聚胺基酸高分子之合成 37 3.3.2 聚胺基酸接枝及醣修飾 39 3.3.3 聚丙烯酸之合成 40 3.3.4 聚胺基酸與聚丙烯酸PEC粒子的製備 41 第四章 結果與討論 42 4.1 材料的合成與鑑定 42 4.1.1 聚賴胺酸高分子的合成、接枝與修飾 42 4.1.2 聚賴胺酸接枝硫辛酸之結構鑑定 44 4.1.3 聚丙烯酸的合成與鑑定 46 4.2 聚電解質PEC粒子的製備與鑑定 47 4.3 聚賴胺酸接枝高分子的雙醣修飾 51 4.4 醣修飾聚胺基酸高分子複合粒子功能性分析 56 4.4.1 雙醣修飾之活性測試 56 4.4.2 酸鹼應答 57 4.4.3 還原應答 59 4.4.4 PEC粒子的結構與形態鑑定 61 第五章 結論 65 第六章 參考文獻 66

    (1) Zhuang, Z.; Zhu, X.; Cai, C.; Lin, J.; Wang, L., Self-Assembly of a Mixture System Containing Polypeptide Graft and Block Copolymers: Experimental Studies and Self-Consistent Field Theory Simulations. The Journal of Physical Chemistry B, 116, 10125-10134 (2012).
    (2) Jourdainne, L.; Arntz, Y.; Senger, B.; Debry, C.; Voegel, J.-C.; Schaaf, P.; Lavalle, P., Multiple strata of exponentially growing polyelectrolyte multilayer films. Macromolecules, 40, 316-321 (2007).
    (3) Tryoen‐Tóth, P.; Vautier, D.; Haikel, Y.; Voegel, J. C.; Schaaf, P.; Chluba, J.; Ogier, J., Viability, adhesion, and bone phenotype of osteoblast‐like cells on polyelectrolyte multilayer films. Journal of biomedical materials research, 60, 657-667 (2002).
    (4) De Bernardez-Clark, E.; Georgiou, G., Inclusion Bodies and Recovery of Proteins from the Aggregated State. In Protein Refolding, American Chemical Society: 1991; Vol. 470, pp 1-20.
    (5) Kaiser, E. T.; Kezdy, F. J., AMPHIPHILIC SECONDARY STRUCTURE - DESIGN OF PEPTIDE-HORMONES. Science, 223, 249-255 (1984).
    (6) Kruszewska, D.; Sahl, H.-G.; Bierbaum, G.; Pag, U.; Hynes, S. O.; Ljungh, Å., Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy, 54, 648-653 (2004).
    (7) Nelson, D. L., In Lehninger principles of biochemistry, 5th ed.; W.H. Freeman & Company: 2008; pp 31-71.
    (8) Hopfinger, A., Polymer-solvent interactions for homopolypeptides in aqueous solution. Macromolecules, 4, 731-737 (1971).
    (9) Fukada, K.; Maeda, H.; Ikeda, S., Kinetics of pH-induced random coil-. beta.-structure conversion of poly [S-(carboxymethyl)-L-cysteine]. Macromolecules, 22, 640-645 (1989).
    (10) Sun, J.; Deng, C.; Chen, X.; Yu, H.; Tian, H.; Sun, J.; Jing, X., Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence. Biomacromolecules, 8, 1013-1017 (2007).
    (11) Huang, C.-J.; Chang, F.-C., Polypeptide diblock copolymers: syntheses and properties of poly (N-isopropylacrylamide)-b-polylysine. Macromolecules, 41, 7041-7052 (2008).
    (12) Triftaridou, A. I.; Chécot, F.; Iliopoulos, I., Poly (N, N‐dimethylacrylamide)‐block‐Poly (L‐lysine) Hybrid Block Copolymers: Synthesis and Aqueous Solution Characterization. Macromolecular Chemistry and Physics, 211, 768-777 (2010).
    (13) Kukula, H.; Schlaad, H.; Antonietti, M.; Förster, S., The Formation of Polymer Vesicles or “Peptosomes” by Polybutadiene-b lock-poly (l-glutamate) s in Dilute Aqueous Solution. Journal of the American Chemical Society, 124, 1658-1663 (2002).
    (14) Deming, T. J., Polypeptide materials: New synthetic methods and applications. Advanced Materials, 9, 299-311 (1997).
    (15) Kricheldorf, H. R., Polypeptides and 100 Years of Chemistry of α‐Amino Acid N‐Carboxyanhydrides. Angewandte Chemie International Edition, 45, 5752-5784 (2006).
    (16) Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis (trichloromethyl) carbonate. Tetrahedron Letters, 29, 5859-5862 (1988).
    (17) Poche, D. S.; Moore, M. J.; Bowles, J. L., An unconventional method for purifying the N-carboxyanhydride derivatives of γ-alkyl-L-glutamates. Synthetic communications, 29, 843-854 (1999).
    (18) Deming, T. J., Living polymerization of α‐amino acid‐N‐carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry, 38, 3011-3018 (2000).
    (19) Yamashita, S.; Tani, H., Polymerization of γ-Benzyl L-Glutamate N-Carboxyanhydride with Metal Acetate-Tri-n-butylphosphine Catalyst System. Macromolecules, 7, 406-409 (1974).
    (20) Deming, T. J., Amino acid derived nickelacycles: intermediates in nickel-mediated polypeptide synthesis. Journal of the American Chemical Society, 120, 4240-4241 (1998).
    (21) Halperin, A.; Tirrell, M.; Lodge, T., Tethered chains in polymer microstructures. In Macromolecules: Synthesis, Order and Advanced Properties, Springer: 1992; pp 31-71.
    (22) Chécot, F.; Brûlet, A.; Oberdisse, J.; Gnanou, Y.; Mondain-Monval, O.; Lecommandoux, S., Structure of polypeptide-based diblock copolymers in solution: Stimuli-responsive vesicles and micelles. Langmuir, 21, 4308-4315 (2005).
    (23) Gebhardt, K. E.; Ahn, S.; Venkatachalam, G.; Savin, D. A., Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. Journal of Colloid and Interface Science, 317, 70-76 (2008).
    (24) Carboni, B.; Benalil, A.; Vaultier, M., Aliphatic amino azides as key building blocks for efficient polyamine syntheses. The Journal of Organic Chemistry, 58, 3736-3741 (1993).
    (25) Cho, C.-S.; Nah, J.-W.; Jeong, Y.-I.; Cheon, J.-B.; Asayama, S.; Ise, H.; Akaike, T., Conformational transition of nanoparticles composed of poly (γ-benzyl l-glutamate) as the core and poly (ethylene oxide) as the shell. Polymer, 40, 6769-6775 (1999).
    (26) Sinaga, A.; Hatton, T.; Tam, K., Poly (acrylic acid)-block-poly (L-valine): Evaluation of β-sheet formation and its stability using circular dichroism technique. Biomacromolecules, 8, 2801-2808 (2007).
    (27) Liu, Z.; Jiao, Y.; Liu, F.; Zhang, Z., Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. Journal of Biomedical Materials Research Part A, 83, 806-812 (2007).
    (28) Kim, T.-H.; Jiang, H.-L.; Jere, D.; Park, I.-K.; Cho, M.-H.; Nah, J.-W.; Choi, Y.-J.; Akaike, T.; Cho, C.-S., Chemical modification of chitosan as a gene carrier< i> in vitro</i> and< i> in vivo</i>. Progress in Polymer Science, 32, 726-753 (2007).
    (29) Hirano, S.; Ohe, Y.; Ono, H., Selective N-acylation of chitosan. Carbohydrate Research, 47, 315 (1976).
    (30) Liu, T.-Y.; Lin, Y.-L., Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomaterialia, 6, 1423-1429 (2010).
    (31) Liu, T.-Y.; Chen, S.-Y.; Lin, Y.-L.; Liu, D.-M., Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation. Langmuir, 22, 9740-9745 (2006).
    (32) Jiang, G.-B.; Quan, D.; Liao, K.; Wang, H., Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Molecular Pharmaceutics, 3, 152-160 (2006).
    (33) Jiang, G.-B.; Quan, D.; Liao, K.; Wang, H., Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydrate Polymers, 66, 514-520 (2006).
    (34) Fox, T. G.; Flory, P. J., Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 21, 581-591 (1950).
    (35) Crespo, J.; Lecommandoux, S.; Borsali, R.; Klok, H.-A.; Soldi, V., Small-angle neutron scattering from diblock copolymer poly (styrene-d 8)-b-poly (γ-benzyl L-glutamate) solutions: rod-coil to coil-coil transition. Macromolecules, 36, 1253-1256 (2003).
    (36) Watanabe, J.; Uematsu, I., Anomalous properties of poly (γ-benzyl L-glutamate) film composed of unusual 72 helices. Polymer, 25, 1711-1717 (1984).
    (37) Gonçalves, C.; Martins, J. A.; Gama, F. M., Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. Biomacromolecules, 8, 392-398 (2007).
    (38) Huang, Y.-C.; Arham, M.; Jan, J.-S., Alkyl chain grafted poly (l-lysine): self-assembly and biomedical application as carriers. Soft Matter, 7, 3975-3983 (2011).
    (39) Martín del Valle, E. M.; Galán, M. A.; Carbonell, R. G., Drug delivery technologies: The way forward in the new decade. Industrial & Engineering Chemistry Research, 48, 2475-2486 (2009).
    (40) Du, M.; Keeling, K. M.; Fan, L.; Liu, X.; Bedwell, D. M., Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. Journal of Biological Chemistry, 284, 6885-6892 (2009).
    (41) Kim, M. S.; Dayananda, K.; Choi, E. K.; Park, H. J.; Kim, J. S.; Lee, D. S., Synthesis and characterization of poly (l-glutamic acid)-< i> block</i>-poly (l-phenylalanine). Polymer, 50, 2252-2257 (2009).
    (42) Akagi, T.; Kaneko, T.; Kida, T.; Akashi, M., Preparation and characterization of biodegradable nanoparticles based on poly (γ-glutamic acid) with l-phenylalanine as a protein carrier. Journal of Controlled Release, 108, 226-236 (2005).
    (43) Wang, C.; Gong, Y.; Fan, N.; Liu, S.; Luo, S.; Yu, J.; Huang, J., Fabrication of polymer–platinum (II) complex nanomicelle from mPEG–g-α, β-poly [(< i> N</i>-amino acidyl)-dl-aspartamide] and cis-dichlorodiammine platinum (II) and its cytotoxicity. Colloids and Surfaces B: Biointerfaces, 70, 84-90 (2009).
    (44) Prompruk, K.; Govender, T.; Zhang, S.; Xiong, C.; Stolnik, S., Synthesis of a novel PEG-block-poly (aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. International Journal of Pharmaceutics, 297, 242-253 (2005).
    (45) Choi, Y.-R.; Chae, S. Y.; Ahn, C.-H.; Lee, M.; Oh, S.; Byun, Y.; Rhee, B. D.; Ko, K. S., Development of polymeric gene delivery carriers: PEGylated copolymers of L-lysine and L-phenylalanine. Journal of drug targeting, 15, 391-398 (2007).
    (46) Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. British journal of cancer, 92, 1240-1246 (2005).
    (47) Koizumi, F.; Kitagawa, M.; Negishi, T.; Onda, T.; Matsumoto, S.-i.; Hamaguchi, T.; Matsumura, Y., Novel SN-38–Incorporating Polymeric Micelles, NK012, Eradicate Vascular Endothelial Growth Factor–Secreting Bulky Tumors. Cancer Research, 66, 10048-10056 (2006).
    (48) Zhu, L.; Zhao, L.; Qu, X.; Yang, Z., pH-Sensitive Polymeric Vesicles from Coassembly of Amphiphilic Cholate Grafted Poly (l-lysine) and Acid-Cleavable Polymer–Drug Conjugate. Langmuir, 28, 11988-11996 (2012).
    (49) Ai, S.; Duan, J.; Liu, X.; Bock, S.; Tian, Y.; Huang, Z., Biological Evaluation of a Novel Doxorubicin− Peptide Conjugate for Targeted Delivery to EGF Receptor-Overexpressing Tumor Cells. Molecular Pharmaceutics, 8, 375-386 (2011).
    (50) Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z., A novel poly (l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Molecular Pharmaceutics, 7, 953-962 (2010).
    (51) Maeda, H.; Greish, K.; Fang, J., The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. In Polymer Therapeutics II, Springer: 2006; pp 103-121.
    (52) Matsumura, Y.; Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387-6392 (1986).
    (53) Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 95, 4607-4612 (1998).
    (54) Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V., Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Advanced Drug Delivery Reviews, 54, 135-147 (2002).
    (55) Moghimi, S. M.; Hunter, A. C.; Murray, J. C., Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews, 53, 283-318 (2001).
    (56) Moghimi, S.; Patel, H., Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system–the concept of tissue specificity. Advanced Drug Delivery Reviews, 32, 45-60 (1998).
    (57) Howard, M. D.; Jay, M.; Dziubla, T. D.; Lu, X., PEGylation of nanocarrier drug delivery systems: state of the art. Journal of Biomedical Nanotechnology, 4, 133-148 (2008).
    (58) Otsuka, H.; Nagasaki, Y.; Kataoka, K., PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55, 403-419 (2003).
    (59) Torchilin, V. P.; Trubetskoy, V. S., Which polymers can make nanoparticulate drug carriers long-circulating? Advanced Drug Delivery Reviews, 16, 141-155 (1995).
    (60) Socha, M.; Lamprecht, A.; El Ghazouani, F.; Emond, E.; Maincent, P.; Barre, J.; Hoffman, M.; Ubrich, N., Increase in the vascular residence time of propranolol-loaded nanoparticles coated with heparin. Journal of Nanoscience and Nanotechnology, 8, 2369-2376 (2008).
    (61) Dressman, J. B.; Berardi, R. R.; Dermentzoglou, L. C.; Russell, T. L.; Schmaltz, S. P.; Barnett, J. L.; Jarvenpaa, K. M., Upper gastrointestinal (GI) pH in young, healthy men and women. Pharmaceutical Research, 7, 756-761 (1990).
    (62) Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 58, 1655-1670 (2006).
    (63) Kararli, T. T., Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharmaceutics & drug disposition, 16, 351-380 (1995).
    (64) Read, N.; Sugden, K., Gastrointestinal dynamics and pharmacology for the optimum design of controlled-release oral dosage forms. Critical reviews in therapeutic drug carrier systems, 4, 221 (1988).
    (65) Watson, P.; Jones, A. T.; Stephens, D. J., Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Advanced Drug Delivery Reviews, 57, 43-61 (2005).
    (66) Grabe, M.; Oster, G., Regulation of organelle acidity. The Journal of general physiology, 117, 329-344 (2001).
    (67) Rofstad, E. K.; Mathiesen, B.; Kindem, K.; Galappathi, K., Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66, 6699-6707 (2006).
    (68) Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research, 49, 6449-6465 (1989).
    (69) Shi, Z.; Zhou, Y.; Yan, D., Facile Fabrication of pH‐Responsive and Size‐Controllable Polymer Vesicles From a Commercially Available Hyperbranched Polyester. Macromolecular Rapid Communications, 29, 412-418 (2008).
    (70) Dou, H.; Jiang, M.; Peng, H.; Chen, D.; Hong, Y., pH‐Dependent Self‐Assembly: Micellization and Micelle–Hollow‐Sphere Transition of Cellulose‐Based Copolymers. Angewandte Chemie International Edition, 42, 1516-1519 (2003).
    (71) Iatrou, H.; Frielinghaus, H.; Hanski, S.; Ferderigos, N.; Ruokolainen, J.; Ikkala, O.; Richter, D.; Mays, J.; Hadjichristidis, N., Architecturally induced multiresponsive vesicles from well-defined polypeptides. Formation of gene vehicles. Biomacromolecules, 8, 2173-2181 (2007).
    (72) Du, J.; Armes, S. P., pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. Journal of the American Chemical Society, 127, 12800-12801 (2005).
    (73) Holowka, E. P.; Sun, V. Z.; Kamei, D. T.; Deming, T. J., Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nature Materials, 6, 52-57 (2006).
    (74) Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J., Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials, 3, 244-248 (2004).
    (75) Borchert, U.; Lipprandt, U.; Bilang, M.; Kimpfler, A.; Rank, A.; Peschka-Süss, R.; Schubert, R.; Lindner, P.; Förster, S., pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir, 22, 5843-5847 (2006).
    (76) Checot, F.; Lecommandoux, S.; Klok, H.-A.; Gnanou, Y., From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly (diene-b-peptide) diblock copolymers. The European Physical Journal E, 10, 25-35 (2003).
    (77) Agut, W.; Brûlet, A.; Taton, D.; Lecommandoux, S., Thermoresponsive micelles from Jeffamine-b-poly (L-glutamic acid) double hydrophilic block copolymers. Langmuir, 23, 11526-11533 (2007).
    (78) Cheon, J.-B.; Jeong, Y.-I.; Cho, C.-S., Effects of temperature on diblock copolymer micelle composed of poly (< i> γ</i>-benzyl L-glutamate) and poly (< i> N</i>-isopropylacrylamide). Polymer, 40, 2041-2050 (1999).
    (79) Ding, C.; Zhao, L.; Liu, F.; Cheng, J.; Gu, J.; Dan, S.-.; Liu, C.; Qu, X.; Yang, Z., Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules, 11, 1043-1051 (2010).
    (80) Lee, B. H.; West, B.; McLemore, R.; Pauken, C.; Vernon, B. L., In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules, 7, 2059-2064 (2006).
    (81) Han, H. D.; Kim, T. W.; Shin, B. C.; Choi, H. S., Release of calcein from temperature-sensitive liposomes. Macromolecular Research, 13, 54-61 (2005).
    (82) Whitehead, K. A.; Langer, R.; Anderson, D. G., Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery, 8, 129-138 (2009).
    (83) Chang, B.; Chen, D.; Wang, Y.; Chen, Y.; Jiao, Y.; Sha, X.; Yang, W., Bioresponsive Controlled Drug Release Based on Mesopo-rous Silica Nanoparticles Coated with Reductively Sheddable Polymer Shell. Chemistry of Materials,
    (84) Dam, H. H.; Caruso, F., Formation and Degradation of Layer-by-Layer-Assembled Polyelectrolyte Polyrotaxane Capsules. Langmuir, (2013).
    (85) Cunningham, A.; Oh, J. K., New Design of Thiol‐Responsive Degradable Polylactide‐Based Block Copolymer Micelles. Macromolecular Rapid Communications, 34, 163-168 (2013).
    (86) Power‐Billard, K. N.; Spontak, R. J.; Manners, I., Redox‐Active Organometallic Vesicles: Aqueous Self‐Assembly of a Diblock Copolymer with a Hydrophilic Polyferrocenylsilane Polyelectrolyte Block. Angewandte Chemie International Edition, 43, 1260-1264 (2004).
    (87) Lin, C.; Zhong, Z.; Lok, M. C.; Jiang, X.; Hennink, W. E.; Feijen, J.; Engbersen, J. F., Novel bioreducible poly (amido amine) s for highly efficient gene delivery. Bioconjugate Chemistry, 18, 138-145 (2007).
    (88) Cerritelli, S.; Velluto, D.; Hubbell, J. A., PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 8, 1966-1972 (2007).
    (89) Wei, R.; Cheng, L.; Zheng, M.; Cheng, R.; Meng, F.; Deng, C.; Zhong, Z., Reduction-responsive disassemblable core-cross-linked micelles based on poly (ethylene glycol)-b-poly (N-2-hydroxypropyl methacrylamide)–lipoic acid conjugates for triggered intracellular anticancer drug release. Biomacromolecules, 13, 2429-2438 (2012).
    (90) Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30, 1191-1212 (2001).
    (91) Tsuchida, E., Formation of polyelectrolyte complexes and their structures. Journal of Macromolecular Science—Pure and Applied Chemistry, 31, 1-15 (1994).
    (92) Salamone, J.; Poulin, S.; Watterson, A.; Olson, A., Ordered polyelectrolyte complex formation from amorphous polyions. Polymer, 20, 611-614 (1979).
    (93) Sukhishvili, S. A.; Kharlampieva, E.; Izumrudov, V., Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules, 39, 8873-8881 (2006).
    (94) Blacklock, J.; Handa, H.; Soundara Manickam, D.; Mao, G.; Mukhopadhyay, A.; Oupický, D., Disassembly of layer-by-layer films of plasmid DNA and reducible TAT polypeptide. Biomaterials, 28, 117-124 (2007).
    (95) Chiang, W.-H.; Ho, V. T.; Huang, W.-C.; Huang, Y.-F.; Chern, C.-S.; Chiu, H.-C., Dual Stimuli-Responsive Polymeric Hollow Nanogels Designed as Carriers for Intracellular Triggered Drug Release. Langmuir, 28, 15056-15064 (2012).
    (96) Zhang, L. Y.; Guo, R.; Yang, M.; Jiang, X. Q.; Liu, B. R., Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Advanced Materials, 19, 2988-+ (2007).
    (97) Rao, J. Y.; Luo, Z. F.; Ge, Z. S.; Liu, H.; Liu, S. Y., "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules, 8, 3871-3878 (2007).
    (98) He, C. L.; Zhao, C. W.; Chen, X. S.; Guo, Z. J.; Zhuang, X. L.; Jing, X. B., Novel pH- and temperature-responsive block copolymers with tunable pH-responsive range. Macromolecular Rapid Communications, 29, 490-497 (2008).
    (99) Zhang, J.; Wu, L.; Meng, F.; Wang, Z.; Deng, C.; Liu, H.; Zhong, Z., pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery. Langmuir, 28, 2056-2065 (2011).
    (100) Malvern Instruments Ltd., In Zetasizer Nano Series User Manual, United Kingdom,; 1-270 (2003).
    (101) Wright, P. E.; Dyson, H. J., Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of molecular biology, 293, 321-331 (1999).
    (102) Forood, B.; Feliciano, E. J.; Nambiar, K. P., Stabilization of alpha-helical structures in short peptides via end capping. Proceedings of the National Academy of Sciences, 90, 838-842 (1993).
    (103) Muller, M.; Buchet, R.; Fringeli, U. P., 2D-FTIR ATR spectroscopy of thermo-induced periodic secondary structural changes of poly-(L)-lysine: A cross-correlation analysis of phase-resolved temperature modulation spectra. Journal of Physical Chemistry, 100, 10810-10825 (1996).
    (104) Binger, P.; Doyle, M. J.; McMeeking, J.; Krüger, C.; Tsay, Y.-H., Metallacycloalkanes: I. Preparation and characterisation of α, α′-bipyridyl-5-nickela-3, 3, 7, 7-tetramethyl-trans-tricyclo [4.1. 0.02, 4] heptane. Journal of Organometallic Chemistry, 135, 405-414 (1977).
    (105) Gaspard, J.; Silas, J. A.; Shantz, D. F.; Jan, J.-S., Supramolecular assembly of lysine-b-glycine block copolypeptides at different solution conditions. Supramolecular Chemistry, 22, 178-185 (2010).
    (106) Huang, J.; Bonduelle, C.; Thévenot, J.; Lecommandoux, S. b.; Heise, A., Biologically active polymersomes from amphiphilic glycopeptides. Journal of the American Chemical Society, 134, 119-122 (2011).
    (107) Huang, J.; Habraken, G.; Audouin, F.; Heise, A., Hydrolytically stable bioactive synthetic glycopeptide homo-and copolymers by combination of NCA polymerization and click reaction. Macromolecules, 43, 6050-6057 (2010).
    (108) Byun, H.; Hong, B.; Nam, S. Y.; Jung, S. Y.; Rhim, J. W.; Lee, S. B.; Moon, G. Y., Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromolecular Research, 16, 189-193 (2008).
    (109) Balakirev, M.; Schoehn, G.; Chroboczek, J., Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. Chemistry & biology, 7, 813-819 (2000).
    (110) Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z., Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 152, 2-12 (2011).
    (111) Saito, G.; Swanson, J. A.; Lee, K.-D., Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Advanced Drug Delivery Reviews, 55, 199-215 (2003).
    (112) Sun, H.; Guo, B.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z., Biodegradable micelles with sheddable poly (ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 30, 6358-6366 (2009).

    無法下載圖示 校內:2018-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE