| 研究生: |
洪正昇 Hong, Jheng-Sheng |
|---|---|
| 論文名稱: |
探討磷酸水解酶PP2A調節次單元B56γ3的絲氨酸440位點調控B56γ3和PP2A核心酶的結合及B56γ3對p27KIP1調節的角色 Investigate the role of Serine 440 of the regulatory subunit B56γ3 in the assembly of B56γ3 with the protein phosphatase 2A core enzyme and B56γ3 regulation of p27KIP1 |
| 指導教授: |
蔣輯武
Chiang, Chi-Wu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 磷酸水解酶PP2A 、調節蛋白B次單元 、p27KIP1 |
| 外文關鍵詞: | Protein phosphatase 2A (PP2A), Regulatory subunit B56γ3, p27KIP1 |
| 相關次數: | 點閱:121 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸水解酶PP2A是三個次單元所組成的複合體,包含結構蛋白A次單元,調節蛋白B次單元以及執行催化功能蛋白C次單元。其中B次單元決定受質特異性及引領PP2A完全酶到細胞內適當位置執行功能。最近的研究指出包含B56γ的PP2A完全酶有抑制腫瘤的角色。過去實驗室研究已經證明細胞在G1/S轉換期時,PP2A-B56γ3會集中分布在核,並調節G1/S的變換。PP2A-B56γ3透過調節p27KIP1表現量,在核內的分布及活性進而調控腫瘤細胞的增殖。而我們也發現線苷單磷酸活化蛋白激酶(AMPK)及酪蛋白激酶1-δ(CK1-δ)兩者皆會調控B56γ3在絲胺酸440位點的磷酸化,而這個位點對於B56γ3座落在核是重要的。為了探討絲胺酸440在調節B56γ3活性的角色,我們委託廠商製作針對磷酸化絲胺酸440的抗體來進行我們的研究。然而,我們實驗結果顯示磷酸化絲胺酸440的抗體在辨認絲胺酸(Ser)突變成磷酸化缺陷的丙胺酸(Ala)(S440A)的能力和辨識正常B56γ3 (wild-type)的能力相當。而意外的是,另一個磷酸化缺陷的突變,是在人類肺癌中發現的將絲胺酸(Ser)突變成異亮胺酸(Ile)(S440I)的突變,這個突變對於被磷酸化絲胺酸440的抗體的辨識能力較差。以免疫沉澱法分析的結果我們發現B56γ3-S440I與PP2A A次單元的結合大幅下降相較於和B56γ3-WT的結合,而B56γ3-S440A無明顯影響。我們透過雙分子螢光互補分析(BiFC)來探討絲胺酸440突變對於PP2A完全酶的影響,意外發現雙分子螢光互補分析訊號僅S440A與PP2A A次單元結合能力減弱,相較於B56γ3-WT,而B56γ3-S440I無明顯影響。另外我們透過生長曲線的實驗得知S440I及S440A的突變會削弱B56γ3對於細胞增殖的抑制效果。進一步我們在免疫共沉澱法(co-IP)的實驗發現B56γ3-S440I和B56γ3-S440A兩者突變皆影響對於p27的結合。此外,我們發現B56γ3-S440I和B56γ3-S440A皆削弱B56γ3對於p27在蘇胺酸157位點的磷酸化的調節效果。總結而言,我們證明絲胺酸440的角色在對於調控PP2A AC核心酶的結合及p27的調控。絲胺酸的突變可能造成PP2A- B56γ3對於腫瘤的抑制功能。
Protein phosphatase 2A (PP2A) is a trimeric complex that consists of a scaffolding A subunit, a catalytic C subunit, and a variable regulatory B subunit. The B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Accumulated evidence indicates that the B56γ-containing PP2A holoenzyme (PP2A-B56γ) plays a tumor suppressor role. PP2A-B56γ3 reduces proliferation of an array of cancer cell lines through regulating levels, nuclear localization and activity of p27KIP1. Our lab previously found that both AMP-activated protein kinase (AMPK) and casein kinase I (CKI) regulate phosphorylation of B56γ3 at Ser440, which is critically involved in regulating the nuclear localization of B56γ3. To investigate the role of Ser440 in regulating function of B56γ3, we have obtained anti-phospho-Ser440 (p-S440) custom-made antibody (Ab) to pursue our study. However, our data showed that the anti-pS440 Ab equally recognized both wild-type B56γ3(B56γ3WT) and the phosphorylation defective mutant B56γ3 S440A. Interestingly, another phosphorylation defective mutant B56γ3 S440I, which was found in human lung carcinoma, was poorly recognized by the antibody. We found that B56γ3 S440I, but not B56γ3 S440A, showed significantly reduced association with the A subunit, suggesting a defect in recruitment into the PP2A holoenzyme. We performed bimolecular fluorescence complementation analysis (BiFC) to investigate the effect of Ser440 mutations on PP2A holoenzyme assembly and showed that BiFC signals were reduced when B56γ3S440A, but not S440I, bound with PP2A A subunit compared with B56γ3WT. We found that both S440I and S440A mutants showed impaired inhibitory function on cell proliferation. Besides, results of co-immunoprecipitation (co-IP) showed that both B56γ3 S440I and B56γ3 S440A had reduced interaction with p27 KIP1. In consistent with the co-IP data, we found that both B56γ3 S440I and B56γ3 S440A showed impaired activity in regulating levels of phosphorylation at Thr157 of p27KIP1 compared with B56γ3WT. In summary, we demonstrate that Ser440 plays a role in regulating assembly of B56γ3 with the AC core enzyme and in regulating interaction with p27KIP1. Therefore, it is possible that mutation at Ser440 may result in loss of tumor suppression activity of PP2A-B56γ3.
1. Kremmer, E., et al., Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol, 1997. 17(3): p. 1692-1701.
2. Mayer-Jaekel, R.E., et al., The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 72(4): p. 621-633.
3. Healy, A.M., et al., CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Molecular and Cellular Biology, 1991. 11(11): p. 5767-5780.
4. McCright, B. and D.M. Virshup, Identification of a New Family of Protein Phosphatase 2A Regulatory Subunits. Journal of Biological Chemistry, 1995. 270(44): p. 26123-26128.
5. Csortos, C., et al., High Complexity in the Expression of the B′ Subunit of Protein Phosphatase 2A0: EVIDENCE FOR THE EXISTENCE OF AT LEAST SEVEN NOVEL ISOFORMS. Journal of Biological Chemistry, 1996. 271(5): p. 2578-2588.
6. Janssens, V. and J. Goris, Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001. 353(Pt 3): p. 417-439.
7. Moreno, C.S., et al., WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem, 2000. 275(8): p. 5257-5263.
8. Dagda, R.K., et al., A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem, 2003. 278(27): p. 24976-24985.
9. Strack, S., et al., Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol, 1998. 392(4): p. 515-527.
10. McCright, B., et al., The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem, 1996. 271(36): p. 22081-22089.
11. Hemmings, B.A., et al., .alpha.- And .beta.-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 1990. 29(13): p. 3166-3173.
12. Xu, Y., et al., Structure of the protein phosphatase 2A holoenzyme. Cell, 2006. 127(6): p. 1239-1251.
13. Khew-Goodall, Y. and B.A. Hemmings, Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett, 1988. 238(2): p. 265-268.
14. Cho, U.S. and W. Xu, Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2007. 445(7123): p. 53-57.
15. Chen, W., et al., Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 2004. 5(2): p. 127-136.
16. Li, H.H., et al., A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J, 2007. 26(2): p. 402-411.
17. Moreno, C.S., et al., Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Res, 2004. 64(19): p. 6978-6988.
18. Shouse, G.P., Y. Nobumori, and X. Liu, A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A. Oncogene, 2010. 29(27): p. 3933-3941.
19. Lee, T.Y., et al., The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem, 2010. 285(28): p. 21567-21580.
20. Hong, W.F. and C.W. Chiang, Investigate signaling pathways regulating the nuclear localization of the B56γ3 regulatory subunit of protein phosphatase 2A. THESIS,NCKU, 2012.
21. Kao, T.Y. and C. Chiang, W. , Investigate the role of AMPK in regulating the subcellular localization and tumor suppressor activity of the B56γ3 regulatory subunit of protein phosphatase 2A. Thesis, NCKU, 2013.
22. Nobumori, Y., et al., Characterization of B56γ tumor-associated mutations reveals mechanisms for inactivation of B56γ-PP2A. Mol Cancer Res, 2013. 11(9): p. 995-1003.
23. Larrea, M.D., S.A. Wander, and J.M. Slingerland, p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle, 2009. 8(21): p. 3455-3461.
24. Chu, I.M., L. Hengst, and J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-267.
25. Rodier, G., et al., p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. Embo j, 2001. 20(23): p. 6672-6682.
26. Morishita, D., et al., Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res, 2008. 68(13): p. 5076-5085.
27. Vervoorts, J. and B. Luscher, Post-translational regulation of the tumor suppressor p27(KIP1). Cell Mol Life Sci, 2008. 65(20): p. 3255-3264.
28. Serres, M.P., et al., Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene, 2011. 30(25): p. 2846-2858.
29. Lai, T.Y., et al., The B56gamma3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1. Oncotarget, 2016. 7(4): p. 4542-4558.
30. Mo, S.T. and C.W. Chiang, Study the subcellular localization of the PP2A holoenzymes. Thesis, NCKU, 2010.
31. Yang, Y.S. and C.W. Chiang, Study the Mechanism of Nuclear Localization of the B56γ3 Regulatory Subunit of PP2A. Thesis, NCKU, 2010.
32. Ni, I.F. and C.W. Chiang, Investigate the regulatory function of the B56r3 subunit of protein phosphatase 2A. Thesis, NCKU, 2006.
33. Blom, N., S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 1999. 294(5): p. 1351-1362.
34. Xue, Y., et al., GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics, 2008. 7(9): p. 1598-1608.
35. Chen, W., et al., Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res, 2005. 65(18): p. 8183-8192.