簡易檢索 / 詳目顯示

研究生: 許明宏
Hsu, Ming-Hung
論文名稱: 以濺鍍法製備氧化銦與氧化鋅系列之金屬氧化物光電元件及其應用
Investigation of Metal Oxide Optoelectronic Devices Based on InO and ZnO Materials via Sputtering Method
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 122
中文關鍵詞: 金屬氧化物氧化鋅系列材料氧化銦系列材料薄膜電晶體光感測器
外文關鍵詞: metal oxide, ZnO-based material, InO-based material, thin film transistor, photodetector, UV sensor, RF sputter
相關次數: 點閱:115下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要為利用射頻磁控濺鍍法製備金屬氧化物薄膜,並探討其物理、光電特性及實際應用於光電元件之特性研究。研究主要可以分為三個部分,第一部分為單純以本質氧化鋅(intrinsic zinc oxide)製備薄膜電晶體以作為後續研究之特性基準參考。由於我們理解,氧化鋅作為一個經常被使用的寬能隙金屬半導體,它的晶格中普遍性地存在許多會造成元件特性退化或是降低元件性能表現的氧空缺(oxygen vacancies)及鋅間隙(zinc interstitials),因此,在不摻雜其他元素的情況之下,氧化鋅薄膜電晶體的電性並不好。

    第二部份的重點則著重於兩種新穎的氧化鋅系列之氧化物半導體研究,氧化鋅鈦銦(indium titanium zinc oxide, InTiZnO)以及氧化鋅錫鎵(gallium tin zinc oxide, GaSnZnO)。這兩種半導體在過去學界中並無受矚目,於是我們詳細地刻畫其薄膜的特性,其中包含了表面結構、光學特性、以及元素組成等。在製作InTiZnO之光電元件時,我們系統性地討論氧流比(oxygen flow ratio)對於元件特性的影響,並提出如何透過操控氧流比來抑制氧空缺並達成電晶體性能提升的目標。於此同時,我們也研究絕緣層對於元件性能的重要性,並將常用的二氧化矽(SiO2)更換成具有較高介電常數的氧化鋁(Al2O3),結合理論提出載子遷移率大幅提升的原因。而最終製備而成的InTiZnO薄膜電晶體表現優異,擁有一個1.31 V的臨界電壓、載子遷移率為44.69 cm^2/Vs、開關電流比為 6.6×10^6、次臨界擺幅為0.34 V/dec。

    另一方面,我們也同樣製備GaSnZnO的光電元件,利用共濺鍍製程(co-sputtering)的方式以薄膜當中不同金屬的含量做為實驗的變因,討論兩種不同含量的GaSnZnO薄膜電晶體特性的改變與原因。研究結果顯示,以單靶濺鍍製備而成的電晶體,其臨界電壓、載子遷移率、開關電流比、次臨界擺幅的表現,均落後於以共濺鍍製備之電晶體,共濺鍍製備之GaSnZnO薄膜電晶體的開關電流比大於單靶元件約三個數量級,而載子遷移率更是大於單靶元件50倍以上。除此之外,我們也製作了一批GaSnZnO光感測器,並討論了氧流比對光感能力的影響。在適當的調配下,GaSnZnO光感測器能夠有效區別可見光與紫外光,其拒斥比高達10^4。

    最後,我們提出了以「無鎵無鋅」(Ga/Zn-free)的金屬氧化物製作光電元件的概念,我們詳盡地說明為何要捨棄這兩個常見的元素,轉而投入開發氧化銦系列金屬氧化物的原因及其優勢。結果顯示以InSiO為主動層製作而成的薄膜電晶體其效能表現良好,臨界電壓相較於先前研究中所實現之薄膜電晶體要來得低,遷移率在使用同樣氧流比與絕緣層材料之製程手法下也優於其他組,開關電流比也十分優秀。

    In this dissertation, several metal oxides were synthesized through sputtering method, inclusive of intrinsic ZnO, indium titanium zinc oxide (InTiZnO), gallium tin zinc oxide (GaSnZnO), and indium silicon oxide (InSiO). Their material properties were explicitly characterized by quite a few analyses regarding to structure, morphology, transparency, chemical states, and so on. Confirmed by UV-vis spectrophotometer, these materials were all transparent in the visible light region, indicating that we could take the advantages from them and fabricate different kinds of optoelectronic devices with the assistance of these semiconducting metal oxides.

    In the beginning, we first manufactured thin film transistors (TFTs) with intrinsic ZnO as active layer. The electrical performance was not impressive, which might stem from the innate defects, namely excess oxygen vacancies, in the ZnO film. It is known that the indigenous oxygen vacancies and zinc interstitials in ZnO lattice could cause deterioration to ZnO and ZnO-based electrical components. Hence, it is urgent that we look for a solution to cope with this matter. Fortunately, doping metals is one of the simplest and straightforward solutions. In this dissertation we reported that some metallic elements were promising and had potential of being a dopant, such as indium, titanium, gallium, and tin. We discussed the physical and chemical properties of these elements to elucidate the reasons why they were chosen as dopants.

    Next, we fabricated InTiZnO TFTs with different oxygen flow ratios to investigate the effect of oxygen flow on device performance. It was found that appropriate amount of oxygen could fill the oxygen vacancies of the film, contributing to the optimal device performance. However, too much oxygen participating in sputtering was likely to form oxygen interstitials, in which we must be cautious when we regulated the reactive gas flow ratio. The superior InTiZnO TFT demonstrated a threshold voltage of 1.31 V, a mobility of 44.69 cm^2/Vs, and an on-off current ratio of 6.6×10^6, and a subthreshold swing of 0.34 V/dec. Since InTiZnO played a role of a wide-gap material, we also employed it to realize metal-semiconductor-metal (MSM) photodetectors (PDs). The UV-sensing ability was also related to the oxygen flow ratio. The results showed that the InTiZnO PDs could effectively reject the interference of the visible light.

    After considering the availability of InTiZnO, we placed stress on GaSnZnO. In this part, we dealt with the constituents in GaSnZnO films. It was found the elemental content might also have impact on the device properties. Two kinds of GaSnZnO films were grown by different sputtering approaches; in other words, one was sputtering a single target, and the other was co-sputtering two targets to manipulate the content of Zn in the films. If we prudently engineered the ZnO content of the film, the device can operate more stably. The GaSnZnO TFT fabricated via sputtering one target demonstrated a threshold voltage of 3.76 V, a mobility of 0.06 cm^2/Vs, and an on-off current ratio of 3.2×10^3, and a subthreshold swing of 0.421 V/dec. Compared with the former one, the GaSnZnO TFT fabricated via co-sputtering method exhibited a threshold voltage of 2.98 V, a mobility of 3.86 cm^2/Vs, and an on-off current ratio of 1.5×10^6, and a subthreshold swing of 0.392 V/dec. On the other hand, the GaSnZnO PDs were made at various oxygen flow ratios, and the better one exhibited a responsivity of 9.12×10^-2 A/W and a UV-to-visible rejection ratio of about 10^4.

    In the last part of our research, we were seeking the possibilities of not using Ga/Zn-contained metal oxides. We clearly pointed out what could happen when we utilized these two elements for semiconductor processing. Furthermore, the potential candidates to replace Ga/Zn-contained metal oxides were proposed. InSiO was selected and the consequent TFTs were fabricated. It tuned out that the Ga/Zn-free material InSiO also performed very well. The threshold voltage was 0.32 V, the mobility was 5.03 cm^2/Vs, the on-off current ratio was 2.9×10^5, and the subthreshold swing was 0.37 V/dec. The InSiO PDs with four different oxygen flow ratios were also realized. Despite the fact that InSiO possessed an energy gap around 3 eV, the fabricated PDs were not very sensitive to the UV light, showing a low rejection ratio of 10^2 and sensitivity of 10^2.

    Abstract in Mandarin I Abstract in English IV Acknowledgements VIII Contents X Table Captions XIV Figure Captions XVI Chapter 1. Introduction 1 1-1 Overview of Metal Oxide Semiconductors 1 1-2 Overview of Thin Film Transistors 3 1-3 Overview of Ultraviolet Sensing Applications 5 1-4 Overviews of High-k Materials 7 1-6 Organization of Dissertation 8 Reference 10 Chapter 2. Relevant Approaches of Measurement, Experimental Parameters, and Introduction of Experimental Instruments 13 2-1 Important Parameters for Thin Film Transistor 13 2-1-1 Threshold Voltage 13 2-1-2 Mobility and Transconductance 16 2-1-3 On-off Current Ratio 18 2-1-4 Subthreshold Swing 18 2-2 Important Parameters for Ultraviolet Sensor 21 2-2-1 Responsivity 21 2-2-2 UV-to-visible Rejection Ratio 23 2-2-3 Photo-to-dark Current Ratio 23 2-2-4 Quantum Efficiency 24 2-2-5 Rise/Decay Time Constants 24 2-3 Experimental Apparatus 25 2-3-1 Radio-frequency Sputtering System 26 2-3-2 X-ray Diffraction Analysis 27 2-3-3 Energy-dispersive X-ray Spectroscopy 29 2-3-4 Atomic Force Microscopy 30 2-3-5 X-ray Photoelectron Spectroscopy 31 2-3-6 UV-vis Spectroscopy 32 2-3-7 Current-Voltage Measurement System 34 Reference 35 Chapter 3. Investigation of Zinc Oxide Optoelectronic Devices Prepared by RF Sputtering System 36 3-1 Motivation 36 3-2 Characteristics of ZnO Thin Film 36 3-2-1 Preparation of ZnO Thin Film 37 3-2-2 Analysis of ZnO Thin Film 37 3-3 Performances of ZnO Thin Film Transistors and UV sensors 42 3-3-1 Fabrication of ZnO Thin Film Transistor 42 3-3-2 Results and Discussion 43 3-3-3 Summary 46 Chapter 4. Investigation of Amorphous Indium Titanium Zinc Oxide Optoelectronic Devices Prepared by RF Sputtering System 47 4-1 Motivation 47 4-2 Characteristics of Indium Titanium Zinc Oxide Thin Film 48 4-2-1 Preparation of Indium Titanium Zinc Oxide Thin Film 48 4-2-2 Analysis of Indium Titanium Zinc Oxide Thin Film 49 4-3 Performances of Indium Titanium Zinc Oxide Thin Film Transistors and UV sensors 54 4-3-1 Fabrication of Indium Titanium Zinc Oxide Optoelectronic Device 55 4-3-2 Results and Discussion 57 4-3-3 Summary 75 Reference 77 Chapter 5. Investigation of Amorphous Gallium Tin Zinc Oxide Optoelectronic Devices Prepared by RF Sputtering System 80 5-1 Motivation 80 5-2 Effect of Co-sputtering on Gallium Tin Zinc Oxide Thin Film Transistor 81 5-2-1 Preparation of Thin Film and Fabrication of Device 81 5-2-2 Thin Film Analysis and Device Performance 82 5-2-3 Summary 89 5-3 Effect of Oxygen Flow Ratio on Gallium Tin Zinc Oxide Photodetector 89 5-3-1 Preparation of Thin Film and Fabrication of Device 90 5-3-2 Thin Film Analysis and Device Performance 91 5-3-3 Summary 98 Reference 100 Chapter 6. Investigation of Gallium/Zinc-free Metal Oxide Optoelectronic Devices 101 6-1 Motivation 101 6-2 Characteristics of Indium Silicon Oxide Thin Film 102 6-2-1 Preparation of Indium Silicon Oxide Thin Film 102 6-2-2 Analysis of Indium Silicon Oxide Thin Film 103 6-3 Performances of Indium Silicon Oxide Thin Film Transistor and UV sensors 107 6-3-1 Fabrication of Indium Silicon Oxide Optoelectronic Devices 108 6-3-2 Results and Discussion 109 6-3-3 Summary 116 Reference 117 Chapter 7. Conclusion and Future Work 119 7-1 Conclusion 119 7-2 Future work 121

    [1-1] Jeong, Y., Song, K., Jun, T., Jeong, S., & Moon, J. (2011). Effect of gallium content on bias stress stability of solution-deposited Ga–Sn–Zn–O semiconductor transistors. Thin Solid Films, 519(18), 6164-6168.
    [1-2] Rim, Y. S., Kim, D. L., Jeong, W. H., & Kim, H. J. (2010). Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Applied Physics Letters, 97(23), 233502.
    [1-3] Fortunato, E. M., Barquinha, P. M., Pimentel, A. C., Gonçalves, A. M., Marques, A. J., Martins, R. F., & Pereira, L. M. (2004). Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 85(13), 2541-2543.
    [1-4] Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide semiconductor thin‐film transistors: a review of recent advances. Advanced materials, 24(22), 2945-2986.
    [1-5] Yu, X., Marks, T. J., & Facchetti, A. (2016). Metal oxides for optoelectronic applications. Nature materials, 15(4), 383.
    [1-6] Tian, J., & Cao, G. (2016). Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coordination Chemistry Reviews, 320, 193-215.
    [1-7] Petti, P. M. V. (2016). L., Münzenrieder, N., Vogt, C. Faber, H., Büthe, L., Cantarella, G., Bottacchi, F., Anthopoulos, TD, Tröster, G.: Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev, 3(2), 021303.
    [1-8] Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge‐produced amorphous Si. Applied physics letters, 31(4), 292-294.
    [1-9] Jahinuzzaman, S. M., Sultana, A., Sakariya, K., Servati, P., & Nathan, A. (2005). Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress. Applied Physics Letters, 87(2), 023502.
    [1-10] Chang, T. S., Chang, T. C., Liu, P. T., Tu, C. H., & Yeh, F. S. (2006). Improvement of Hydrogenated Amorphous-Silicon TFT Performances With Low-k Siloxane-Based Hydrogen Silsesquioxane (HSQ) Passivation Layer. IEEE electron device letters, 27(11), 902-904.
    [1-11] Karim, K. S., Nathan, A., Hack, M., & Milne, W. I. (2004). Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs. IEEE Electron Device Letters, 25(4), 188-190.
    [1-12] Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific reports, 4, 4596.
    [1-13] Li, J. Y., Chang, S. P., Hsu, M. H., & Chang, S. J. (2017). High responsivity MgZnO ultraviolet thin-film phototransistor developed using radio frequency sputtering. Materials, 10(2), 126.
    [1-14] Carcia, P. F., McLean, R. S., Reilly, M. H., & Nunes Jr, G. (2003). Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 82(7), 1117-1119.
    [1-15] Kawamura, Y., Hattori, N., Miyatake, N., & Uraoka, Y. (2013). Comparison between ZnO films grown by plasma-assisted atomic layer deposition using H2O plasma and O2 plasma as oxidant. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31(1), 01A142.
    [1-16] Lee, H. Y., Xia, S. D., Zhang, W. P., Lou, L. R., Yan, J. T., & Lee, C. T. (2010). Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique. Journal of Applied Physics, 108(7), 073119.
    [1-17] Ma, T. Y., & Choi, M. H. (2013). Optical and electrical properties of Mg-doped zinc tin oxide films prepared by radio frequency magnetron sputtering. Applied Surface Science, 286, 131-136.
    [1-18] Lee, S. H., Jun, H. S., Park, J. H., Kim, W., Oh, S., & Park, J. S. (2016). Properties of hafnium-aluminum-zinc-oxide thin films for the application of oxide-transistors. Thin Solid Films, 620, 82-87.
    [1-19] Sharma, A., Madhu, C., & Singh, J. (2014). Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. International Journal of Computer Applications, 89(15), 0975-8887.
    [1-20] Chai, G. Y., Chow, L., Lupan, O., Rusu, E., Stratan, G. I., Heinrich, H., ... & Tiginyanu, I. M. (2011). Fabrication and characterization of an individual ZnO microwire-based UV photodetector. Solid State Sciences, 13(5), 1205-1210.
    [1-21] Li, J. Y., Chang, S. P., Hsu, M. H., & Chang, S. J. (2017). Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-${k} $ Dielectrics. IEEE Photonics Technology Letters, 30(1), 59-62.
    [2-1] Mitoma, N., Aikawa, S., Gao, X., Kizu, T., Shimizu, M., Lin, M. F., ... & Tsukagoshi, K. (2014). Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Applied Physics Letters, 104(10), 102103.
    [2-2] Liu, A., Liu, G., Zhu, H., Shin, B., Fortunato, E., Martins, R., & Shan, F. (2016). Eco-friendly, solution-processed In-WO thin films and their applications in low-voltage, high-performance transistors. Journal of Materials Chemistry C, 4(20), 4478-4484.
    [2-3] Pei, Z., Lai, H. C., Wang, J. Y., Chiang, W. H., & Chen, C. H. (2014). High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor. IEEE Electron Device Letters, 36(1), 44-46.
    [2-4] Hamilton, M. C., Martin, S., & Kanicki, J. (2004). Thin-film organic polymer phototransistors. IEEE Transactions on Electron Devices, 51(6), 877-885.
    [2-5] Ryzhii, V., Mitin, V., Ryzhii, M., Ryabova, N., & Otsuji, T. (2008). Device model for graphene nanoribbon phototransistor. Applied physics express, 1(6), 063002.
    [2-6] Hassanien, A. S., & Akl, A. A. (2015). Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. Journal of Alloys and Compounds, 648, 280-290.
    [4-1] Yue, H. Y., Wu, A. M., Hu, J., Zhang, X. Y., & Li, T. J. (2011). Relationship between Structure and Functional Properties of the ZnO: Al Thin Films. In Materials Science Forum (Vol. 675, pp. 1275-1278). Trans Tech Publications.
    [4-2] Bard, A.J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; CRC Press: Boca Raton, Florida, USA, 1985; Volume 6.
    [4-3] Liu, A., Zhang, Q., Liu, G. X., Shan, F. K., Liu, J. Q., Lee, W. J., ... & Bae, J. S. (2014). Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors. Journal of Electroceramics, 33(1-2), 31-36.
    [4-4] Lemlikchi, S., Abdelli-Messaci, S., Lafane, S., Kerdja, T., Guittoum, A., & Saad, M. (2010). Study of structural and optical properties of ZnO films grown by pulsed laser deposition. Applied Surface Science, 256(18), 5650-5655.
    [4-5] Chen, Y., Xu, X. L., Zhang, G. H., Xue, H., & Ma, S. Y. (2009). A comparative study of the microstructures and optical properties of Cu-and Ag-doped ZnO thin films. Physica B: Condensed Matter, 404(20), 3645-3649.
    [4-6] Koo, C. Y., Song, K., Jun, T., Kim, D., Jeong, Y., Kim, S. H., ... & Moon, J. (2010). Low temperature solution-processed InZnO thin-film transistors. Journal of The Electrochemical Society, 157(4), J111-J115.
    [4-7] Hu, C. F., Feng, J. Y., Zhou, J., & Qu, X. P. (2016). Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors. Applied Physics A, 122(11), 941.
    [4-8] Yong Chong, H., Wan Han, K., Soo No, Y., & Whan Kim, T. (2011). Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zinc-oxide thin-film transistors fabricated by using a solution process. Applied Physics Letters, 99(16), 161908.
    [4-9] Shan, F., Liu, A., Zhu, H., Kong, W., Liu, J., Shin, B., ... & Liu, G. (2016). High-mobility p-type NiO x thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. Journal of Materials Chemistry C, 4(40), 9438-9444.
    [4-10] Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J. W., Empedocles, S., & Goldman, J. L. (2003). High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 425(6955), 274.
    [4-11] Marsal, A., Carreras, P., Puigdollers, J., Voz, C., Galindo, S., Alcubilla, R., ... & Antony, A. (2014). Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors. Thin solid films, 555, 107-111.
    [4-12] Lee, E., Ko, J., Lim, K. H., Kim, K., Park, S. Y., Myoung, J. M., & Kim, Y. S. (2014). Gate Capacitance‐Dependent Field‐Effect Mobility in Solution‐Processed Oxide Semiconductor Thi‐Film Transistors. Advanced Functional Materials, 24(29), 4689-4697.
    [4-13] Vissenberg, M. C. J. M., & Matters, M. (1998). Theory of the field-effect mobility in amorphous organic transistors. Physical Review B, 57(20), 12964.
    [4-14] Xu, W., Wang, H., Xie, F., Chen, J., Cao, H., & Xu, J. B. (2015). Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS applied materials & interfaces, 7(10), 5803-5810.
    [4-15] Fung, T. C., Chuang, C. S., Nomura, K., Shieh, H. P. D., Hosono, H., & Kanicki, J. (2008). Photofield‐effect in amorphous In‐Ga‐Zn‐O (a‐IGZO) thin‐film transistors. Journal of Information Display, 9(4), 21-29.
    [4-16] Weng, W. Y., Hsueh, T. J., Chang, S. J., Huang, G. J., & Chang, S. P. (2010). A Solar-Blind β-Ga2O3 Nanowire Photodetector. IEEE Photonics Technology Letters, 22(10), 709-711.
    [4-17] Sun, J., Dai, Q., Liu, F., Huang, H., Li, Z., Zhang, X., & Wang, Y. (2011). The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response. Science China Physics, Mechanics and Astronomy, 54(1), 102-105.
    [5-1] Parthiban, S., & Kwon, J. Y. (2014). Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. Journal of Materials Research, 29(15), 1585-1596.
    [5-2] Lu, Y. M., Li, X. P., Su, S. C., Cao, P. J., Jia, F., Han, S., ... & Zhu, D. L. (2014). The effect of O2 partial pressure on the photoluminescence of ZnO thin films grown by pulsed laser deposition. Journal of Luminescence, 152, 254-257.
    [5-3] Jeong, S., Ha, Y. G., Moon, J., Facchetti, A., & Marks, T. J. (2010). Role of gallium doping in dramatically lowering amorphous‐oxide processing temperatures for solution‐derived indium zinc oxide thin‐film transistors. Advanced Materials, 22(12), 1346-1350.
    [5-4] Zhang, S. B., Wei, S. H., & Zunger, A. (2001). Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B, 63(7), 075205.
    [5-5] Wang, W., Pan, X., Dai, W., Zeng, Y., & Ye, Z. (2016). Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector. RSC Advances, 6(39), 32715-32720..
    [5-6] Wu, P., Zhang, J., Lu, J., Li, X., Wu, C., Sun, R., ... & Ye, Z. (2014). Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Transactions on Electron Devices, 61(5), 1431-1435.
    [6-1] Aikawa, S., Nabatame, T., & Tsukagoshi, K. (2013). Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Applied Physics Letters, 103(17), 172105.
    [6-2] Mitoma, N., Aikawa, S., Ou-Yang, W., Gao, X., Kizu, T., Lin, M. F., ... & Tsukagoshi, K. (2015). Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si-and W-dopants. Applied Physics Letters, 106(4), 042106.
    [6-3] Aikawa, S., Darmawan, P., Yanagisawa, K., Nabatame, T., Abe, Y., & Tsukagoshi, K. (2013). Thin-film transistors fabricated by low-temperature process based on Ga-and Zn-free amorphous oxide semiconductor. Applied Physics Letters, 102(10), 102101.
    [6-4] Mitoma, N., Aikawa, S., Gao, X., Kizu, T., Shimizu, M., Lin, M. F., ... & Tsukagoshi, K. (2014). Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Applied Physics Letters, 104(10), 102103.
    [6-5] Kizu, T., Aikawa, S., Mitoma, N., Shimizu, M., Gao, X., Lin, M. F., ... & Tsukagoshi, K. (2014). Low-temperature processable amorphous In-WO thin-film transistors with high mobility and stability. Applied Physics Letters, 104(15), 152103.
    [6-6] Gao, X., Aikawa, S., Mitoma, N., Lin, M. F., Kizu, T., Nabatame, T., & Tsukagoshi, K. (2014). Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors. Applied Physics Letters, 105(2), 023503.
    [6-7] Luo, Y. R., & Kerr, J. A. (2012). Bond dissociation energies. CRC Handbook of Chemistry and Physics, 89, 89.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE