簡易檢索 / 詳目顯示

研究生: 陳昰全
Chen, Shih-Chuan
論文名稱: 利用第三型纖維黏蛋白發展對 VEGFR2 及整合蛋白 α5β1 具有雙重專一性的拮抗劑
Development of dual VEGFR2- and integrin α5β1-specific antagonist using the fibronectin type III domain
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 血管新生雙重專一性整合蛋白α5β1纖維黏蛋白
外文關鍵詞: Angiogenesis, Dual-specific, Integrin α5β1, VEGFR2, Fibronectin type III domain
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生是指由現存血管產生新血管的過程,是腫瘤生成的一個重要步驟,
    新產生的血管主要功能是提供腫瘤養分和廢物的運送通道,並且可以作為癌症
    轉移的路徑,因此,抑制血管新生也就成為了一個有潛力的治療標靶。在過去
    的許多研究中證實了整合蛋白 α5β1 和血管內皮生長因子受體 2(VEGFR2)可共
    同調控參與了血管新生的數個內皮細胞功能,其中包括細胞存活、遷移和管狀
    形成。而在本研究中,我們利用纖維黏蛋白第三型區域作為蛋白鷹架,設計出
    能夠拮抗 VEGFR2 以及整合蛋白 α5β1 的重組蛋白,並且利用 GGGGS 的重複
    序列連接兩個拮抗蛋白,依照連接的順序以及連接序列重複次數的不同,設計
    出 4 種能同時拮抗 α5β1 和 VEGFR2 的雙重專一性重組蛋白,並且成功的用
    E.coli 表現系統取得重組蛋白。首先,進行蛋白穩定度的測試,在熱穩定度方
    面,雙重專一性蛋白表現了比 VEGFR2 拮抗蛋白更佳的熱穩定度;另一方面,
    溶解度方面比起 VEGFR2 拮抗蛋白也是有 2~5 倍不等的提昇,但和 α5β1 拮抗
    蛋白相比則還有很大的進步空間。接下來進行細胞實驗,在 k562 細胞黏著實
    驗中,我們發現 α5β1 拮抗蛋白區域在 N 端的組別(簡稱 I-n-V)保留了原本的專一性結合能力(IC 50 約 40nM),而 α5β1 拮抗蛋白區域在 C 端的組別(簡稱 V-n-I)和單一專一性的 α5β1 拮抗蛋白相比(IC 50 約 50nM),其專一性結合能力有上升(IC 50 約 20nM)。而在抑制血管新生實驗中,V-n-I 的組別在 HUVEC 的存活、遷移以及管狀形成的抑制能力上,都發現到比起單一專一性拮抗劑的抑制能力有顯著提昇,而 I-n-V 組別的抑制能力則是沒有顯著的提昇。基於以上實驗結果,我們選擇 V-n-I 組別中的 VEGFR2-(2)-α5β1 進行動物實驗,測試其抑制神經膠細胞瘤的腫瘤成長能力,結果發現確實對 U87 神經膠細胞瘤的生長有抑制能力,並且能夠提昇小鼠的存活時間,本次研究的結果是提出了一個能夠同時針對 VEGFR2 以及整合蛋白 α5β1 進行抑制的蛋白臨床藥物。

    VEGFR2 and integrin α5β1 are involved in tumor angiogenesis, and the inhibition of these targets results in angiogenesis reduction and tumor repression. In this study we used fibronectin type III domain (Fn3) to develop dual VEGFR2- and integrin α5β1-specific Fn3 variants for cancer treatment. Dual-specific mutants were designed by linking VEGFR2-specific and integrin α5β1-specific 9,10Fn3 variants with the (G4S1)2 or (G4S1)3 repeat sequences. Endothelial cell proliferation analysis showed that integrin α5β1-specific, VEGFR2-specific, and dual-specific Fn3 variants inhibited VEGF-induced HUVEC proliferation with the IC 50 values of 504, 578, and 122 nM.
    We also found that dual-specific proteins inhibited VEGF-induced HUVEC imgration with the IC 50 value of ~1μM, and VEGFR2-specific 10Fn3 mutant exhibited 2-fold less inhibitory activity with the IC 50 value of ~2μM. In contrast, integrin α5β1-specific 9,10Fn3 mutant only exhibited slight inhibitory activity in the same concentration. The analysis of endothelial cell tube-formation assay showed that dual-specific Fn3 variants exhibited higher inhibitory activity than mono-specific Fn3 variants. These results were consistent with our hypothesis that co-inhibition of integrin α5β1 and VEGFR2 could synergistically suppress the endothelial cell proliferation, migration and tube-formation in angiogenesis process. The result of xenograph animal model showed that bi-specific proteins can reduce the growth of U87 glioma tumor and increase its survival. This study indicated that dual VEGFR2- and integrin α5β1-specific Fn3 variant is a potential drug for cancer treatment.

    摘要 I Extended Abstract II 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 附錄目錄 XIII 縮寫檢索表 XIV 儀器 XV 第 1 章 緒論 1 1-1 背景資料 1 1-2 血管新生與腫瘤生成 1 1-3 血管內皮生長因子 2 1-3-1 VEGF-A (VEGF) 的介紹 2 1-3-2 VEGFR2 的介紹 3 1-3-3 現今和 VEGF 以及 VEGFR2 相關藥物發展的介紹 4 1-4 整合蛋白 (Integrin) 的介紹 5 1-4-1 整合蛋白 α5β1 的介紹 7 1-4-2 整合蛋白 α5β1 在血管新生中的重要性 7 1-4-3 發展同時拮抗整合蛋白 α5β1 和 VEGFR2 藥物的優勢 8 1-5 纖維黏蛋白 (Fibronectin) 的介紹 9 1-5-1 纖維黏蛋白的第三型區域中第九和第十個模組 10 第 2 章 研究目標與策略 12 第 3 章 材料與方法 14 3-1 9-10Fn3 重組蛋白的製備 14 3-1-1 實驗用菌株、質體和培養液配方 14 3-1-2 重組基因之建構 15 3-1-3 重組蛋白的表現與純化 19 3-1-4 重組蛋白之質譜鑑定 24 3-2 細胞株及培養方法 25 3-3 檢測 HUVEC 表面整合蛋白與 VEGFR2 的表現量 29 3-4 9-10Fn3 重組蛋白抑制整合蛋白 α5β1 和纖維黏蛋白結合之研究 30 3-5 9-10Fn3 重組蛋白抑制 HUVEC 遷移能力之研究 32 3-6 9-10Fn3 重組蛋白抑制 HUVEC 存活之研究 34 3-7 9-10Fn3 重組蛋白抑制 HUVEC 管狀形成(tube formation)之研究 35 3-8 VEGFR2-(2)-α5β1 抑制神經膠細胞瘤生長之研究 37 3-9 9-10Fn3 重組蛋白之蛋白溶解度的測定 38 3-10 9-10Fn3 重組蛋白之蛋白熱穩定度的測定 39 第 4 章 結果 40 4-1 9-10Fn3 重組蛋白的製備與鑑定 40 4-2 HUVEC 表面整合蛋白與 VEGFR2 的表現量 41 4-3 9-10Fn3 重組蛋白抑制整合蛋白 α5β1 和纖維黏蛋白結合之研究 41 4-4 9-10Fn3 重組蛋白抑制 HUVEC 細胞遷移之研究 42 4-5 9-10Fn3 重組蛋白抑制 HUVEC 細胞存活能力之研究 43 4-6 9-10Fn3 重組蛋白抑制 HUVEC 管狀形成之研究 45 4-7 雙重專一性蛋白 VEGFR2-(2)-α5β1 抑制神經膠細胞瘤生長之結果 47 4-8 9-10Fn3 重組蛋白溶解度測試的結果 48 4-9 9-10Fn3 重組蛋白熱穩定度測試的結果 48 第 5 章 討論 50 5-1 9-10Fn3 重組蛋白對整合蛋白 α5β1 的抑制效果 50 5-2 9-10Fn3 重組蛋白對 HUVEC 遷移能力的作用 51 5-3 9-10Fn3 重組蛋白對 HUVEC 存活能力的作用 53 5-4 9-10Fn3 重組蛋白對 HUVEC 管狀形成能力的作用 54 5-5 VEGFR2-(2)-α5β1 對神經膠細胞瘤生長能力的作用 56 5-6 9-10Fn3 重組蛋白的穩定性 56 5-6-1 9-10Fn3 重組蛋白的溶解度 57 5-6-2 9-10Fn3 重組蛋白的熱穩定度 57 5-7 比較 VEGFR2-(n)-α5β1 和 α5β1-(n)-VEGFR2 57 5-8 發展同時抑制 α5β1 和 VEGFR2 之雙重專一性蛋白藥物的優勢 58 5-9 未來展望 60 第 6 章 結論 61 參考文獻 64 附 錄 98

    Adachi, M., Taki, T., Higashiyama, M., Kohno, N., Inufusa, H., and Miyake, M.
    (2000). Significance of integrin alpha5 gene expression as a prognostic factor in
    node-negative non-small cell lung cancer. Clin Cancer Res 6, 96-101.
    Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in
    angiogenesis and lymphangiogenesis. Nature reviews Cancer 8, 604-617.
    Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell Tissue Res 339,
    269-280.
    Bloom, L., and Calabro, V. (2009). FN3: a new protein scaffold reaches the clinic.
    Drug discovery today 14, 949-955.
    Bredel, M., Bredel, C., Juric, D., Harsh, G.R., Vogel, H., Recht, L.D., and Sikic, B.I.
    (2005). Functional network analysis reveals extended gliomagenesis pathway maps
    and three novel MYC-interacting genes in human gliomas. Cancer research 65,
    8679-8689.
    Carbonell, W.S., DeLay, M., Jahangiri, A., Park, C.C., and Aghi, M.K. (2013). beta1
    integrin targeting potentiates antiangiogenic therapy and inhibits the growth of
    bevacizumab-resistant glioblastoma. Cancer research 73, 3145-3154.
    Chang, Y.S. (2013). Design, structure detrmination, and biological evalation of
    potent integrin alpha5beta1 and/or alphavbeta3-specific antagonist usin the ninth
    and/or tenth module of fibronectin type III domain. Tainan, National Cheng Kung
    University.
    Chen, C.P. (2013). Development of dual VEGFR2 and integrin αvβ3-specific
    antagonist using the tenth module of fibronectin type III domain Tainan, National
    Cheng Kung University.
    Connolly, D.T., Heuvelman, D.M., Nelson, R., Olander, J.V., Eppley, B.L., Delfino,
    J.J., Siegel, N.R., Leimgruber, R.M., and Feder, J. (1989). Tumor vascular
    permeability factor stimulates endothelial cell growth and angiogenesis. The Journal
    of clinical investigation 84, 1470-1478.
    Cox, D., Brennan, M., and Moran, N. (2010). Integrins as therapeutic targets:
    lessons and opportunities. Nature reviews Drug discovery 9, 804-820.
    Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological
    implications and therapeutic opportunities. Nature reviews Cancer 10, 9-22.
    Emanuel, S.L., Engle, L.J., Chao, G., Zhu, R.R., Cao, C., Lin, Z., Yamniuk, A.P.,
    Hosbach, J., Brown, J., Fitzpatrick, E., et al. (2011). A fibronectin scaffold approach
    to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth
    factor-I receptor. mAbs 3, 38-48.
    Fanelli, R., Schembri, L., Piarulli, U., Pinoli, M., Rasini, E., Paolillo, M., Galiazzo,
    M., Cosentino, M., and Marino, F. (2014). Effects of a novel cyclic RGD
    peptidomimetic on cell proliferation, migration and angiogenic activity in human
    endothelial cells. Vascular Cell 6, 11.
    Ferrara, N., and Henzel, W.J. (1989). Pituitary follicular cells secrete a novel
    heparin-binding growth factor specific for vascular endothelial cells. Biochemical
    and biophysical research communications 161, 851-858.
    Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and
    development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature
    reviews Drug discovery 3, 391-400.
    Folkman, J. (2006). Angiogenesis. Annual review of medicine 57, 1-18.
    Folkman, J., and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288,
    551-556.
    Goodman, S.L., and Picard, M. (2012). Integrins as therapeutic targets. Trends in
    pharmacological sciences 33, 405-412.
    Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the
    angiogenic switch during tumorigenesis. Cell 86, 353-364.
    Ho SN, H.H., Horton RM, Pullen JK, Pease LR. (1989). Site-directed mutagenesis
    by overlap extension using the polymerase chain reaction. Gene 77, 51-59.
    Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., and De
    Bruijn, E.A. (2004). Vascular endothelial growth factor and angiogenesis.
    Pharmacological reviews 56, 549-580.
    Humphries, M.J. (2001). Cell-substrate adhesion assays. Current protocols in cell
    biology / editorial board, Juan S Bonifacino [et al] Chapter 9, Unit 9 1.
    Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554.
    Ingber, D.E., and Folkman, J. (1989). Mechanochemical switching between growth
    and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro:
    role of extracellular matrix. The Journal of cell biology 109, 317-330.
    Janouskova, H., Maglott, A., Leger, D.Y., Bossert, C., Noulet, F., Guerin, E., Guenot,
    D., Pinel, S., Chastagner, P., Plenat, F., et al. (2012). Integrin alpha5beta1 plays a
    critical role in resistance to temozolomide by interfering with the p53 pathway in
    high-grade glioma. Cancer research 72, 3463-3470.
    Kerbel, R.S. (2008). Tumor angiogenesis. The New England journal of medicine
    358, 2039-2049.
    Kim, S., Bell, K., Mousa, S.A., and Varner, J.A. (2000a). Regulation of
    angiogenesis in vivo by ligation of integrin alpha5beta1 with the central
    cell-binding domain of fibronectin. The American journal of pathology 156,
    1345-1362.
    Kim, S., Harris, M., and Varner, J.A. (2000b). Regulation of integrin alpha vbeta
    3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and
    protein kinase A. J Biol Chem 275, 33920-33928.
    Koide, A., Bailey, C.W., Huang, X., and Koide, S. (1998). The fibronectin type III
    domain as a scaffold for novel binding proteins. Journal of molecular biology 284,
    1141-1151.
    Le Tourneau, C., Raymond, E., and Faivre, S. (2007). Sunitinib: a novel tyrosine
    kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal
    carcinoma and gastrointestinal stromal tumors (GIST). Therapeutics and clinical
    risk management 3, 341-348.
    Lipovsek, D. (2011). Adnectins: engineered target-binding protein therapeutics.
    Protein engineering, design & selection : PEDS 24, 3-9.
    Mac Gabhann, F., and Popel, A.S. (2007). Dimerization of VEGF receptors and
    implications for signal transduction: a computational study. Biophysical chemistry
    128, 125-139.
    Mahabeleshwar, G.H., Chen, J., Feng, W., Somanath, P.R., Razorenova, O.V., and
    Byzova, T.V. (2008). Integrin affinity modulation in angiogenesis. Cell cycle
    (Georgetown, Tex) 7, 335-347.
    Mamluk, R., Carvajal, I.M., Morse, B.A., Wong, H., Abramowitz, J., Aslanian, S.,
    Lim, A.C., Gokemeijer, J., Storek, M.J., Lee, J., et al. (2010). Anti-tumor effect of
    CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2.
    mAbs 2, 199-208.
    Mattern, R.H., Read, S.B., Pierschbacher, M.D., Sze, C.I., Eliceiri, B.P., and Kruse,
    C.A. (2005). Glioma cell integrin expression and their interactions with integrin
    antagonists: Research Article. Cancer therapy 3a, 325-340.
    Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF
    receptor signalling - in control of vascular function. Nature reviews Molecular cell
    biology 7, 359-371.
    Papo, N., Silverman, A.P., Lahti, J.L., and Cochran, J.R. (2011). Antagonistic VEGF
    variants engineered to simultaneously bind to and inhibit VEGFR2 and alphavbeta3
    integrin. Proc Natl Acad Sci U S A 108, 14067-14072.
    Redick, S.D., Settles, D.L., Briscoe, G., and Erickson, H.P. (2000). Defining
    fibronectin's cell adhesion synergy site by site-directed mutagenesis. The Journal of
    cell biology 149, 521-527.
    Roskoski, R., Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in
    tumor progression. Critical reviews in oncology/hematology 62, 179-213.
    Sawada, K., Mitra, A.K., Radjabi, A.R., Bhaskar, V., Kistner, E.O., Tretiakova, M.,
    Jagadeeswaran, S., Montag, A., Becker, A., Kenny, H.A., et al. (2008). Loss of
    E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a
    therapeutic target. Cancer research 68, 2329-2339.
    Schagger, H., Aquila, H., and Von Jagow, G. (1988). Coomassie blue-sodium
    dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of
    polypeptides during electrophoresis. Analytical biochemistry 173, 201-205.
    Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., and Dvorak,
    H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes
    accumulation of ascites fluid. Science (New York, NY) 219, 983-985.
    Singh, M., and Ferrara, N. (2012). Modeling and predicting clinical efficacy for
    drugs targeting the tumor milieu. Nature biotechnology 30, 648-657.
    Singh, P., Carraher, C., and Schwarzbauer, J.E. (2010). Assembly of fibronectin
    extracellular matrix. Annual review of cell and developmental biology 26, 397-419.
    Soldi, R., Mitola, S., Strasly, M., Defilippi, P., Tarone, G., and Bussolino, F. (1999).
    Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor
    receptor-2. The EMBO journal 18, 882-892.
    Somanath, P.R., Malinin, N.L., and Byzova, T.V. (2009). Cooperation between
    integrin avb3 and VEGFR2 in angiogenesis. Angiogenesis 12, 177-185.
    Takahashi, T., Yamaguchi, S., Chida, K., and Shibuya, M. (2001). A single
    autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent
    activation of PLC-gamma and DNA synthesis in vascular endothelial cells. The
    EMBO journal 20, 2768-2778.
    Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F.,
    and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the
    transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
    Tamkun, J.W., and Hynes, R.O. (1983). Plasma fibronectin is synthesized and
    secreted by hepatocytes. J Biol Chem 258, 4641-4647.
    To, W.S., and Midwood, K.S. (2011). Plasma and cellular fibronectin: distinct and
    independent functions during tissue repair. Fibrogenesis & tissue repair 4, 21.
    Trevino, S.R., Scholtz, J.M., and Pace, C.N. (2007). Amino acid contribution to
    protein solubility: Asp, Glu, and Ser contribute more favorably than the other
    hydrophilic amino acids in RNase Sa. Journal of molecular biology 366, 449-460.
    Wang, Y., Fei, D., Vanderlaan, M., and Song, A. (2004). Biological activity of
    bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7, 335-345.
    Wilhelm, S.M., Adnane, L., Newell, P., Villanueva, A., Llovet, J.M., and Lynch, M.
    (2008). Preclinical overview of sorafenib, a multikinase inhibitor that targets both
    Raf and VEGF and PDGF receptor tyrosine kinase signaling. Molecular cancer
    therapeutics 7, 3129-3140.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE