簡易檢索 / 詳目顯示

研究生: 朱冠融
Chu, Kuan-Jung
論文名稱: 考慮橋樑下部結構邊界條件之有限元素模型更新
Finite Element Model Updating Considering Substructure Boundary Conditions
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 147
中文關鍵詞: 結構健康檢測工作模態分析土壤結構體交互作用有限元模型更新基因演算法
外文關鍵詞: Structure Health Monitoring, Operational Modal Analysis, Soil-Structure Interaction, Finite Element Model Updating, Genetic Algorithm
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地處環太平洋火山地震帶,地震導致結構損壞事件頻繁,長期板塊運動亦導致國土地形狹長、高山林立、河流坡度大。再者,台灣氣候屬亞熱帶地區,每年夏季受颱風侵害,挾帶之豪雨常因河道短急引致水位暴漲,洪水沖毀橋樑之災害亦是屢見不鮮,而橋樑結構面臨如此嚴苛環境,建立完善橋樑結構健康檢測系統實屬必要,如此方能確保國內交通基礎建設之安全性。本研究以高雄市甲仙區之甲仙大橋為目標橋樑,由現地之環境微振試驗蒐集微振訊號,透過工作模態分析以及峰值挑選、頻率域分解兩套系統識別方法尋求結構系統之動態特徵;另一方面,本研究亦藉由設計圖說建立目標橋樑之初始有限元素模型,並以適當地盤反力係數模擬地盤、基樁之交互作用。初始模型由於實際結構體之複雜化和劣化等因素,使得其動態特徵與實際量測之動態特徵存在誤差,因此本研究以現地量測訊號所識別之模態頻率為基準,對初始有限元素模型進行更新,透過對結構參數進行敏感性分析,以敏感程度決定更新參數及參數更新順序,再以基因演算法作為更新最佳化方法來對結構參數進行調整,嘗試尋求最佳結構參數,期使模型模態頻率與現地識別結果能達到高度契合。研究過程中對識別方法、量測訊號、模型更新均進行一系列檢核,結果顯示吾人所採用之識別方法具有良好可信度,量測訊號亦屬可靠,而模型更新亦明顯呈現預期結果,大幅增進模型與現地橋樑之一致性,以提升有限元模型模擬結構反應之可信度。更新後具參考價值之有限元素模型可有效用於環境載重分析,探討地震、強風、洪水等自然災害影響,並提供預警性。此外,如持續對橋樑進行監測並配合模型更新,可以透過動態特性之變化掌握營運中橋樑之安全性,提供適當補強與維修之參考依據。

    Taiwan is located on the Pacific Ring of Fire, earthquakes lead to frequent damage on the structure, and due to the geographical location is in the subtropical region, every summer typhoons bring heavy rain caused the water level skyrocketed, the destroyed of bridge by floods is common. Considering such a harsh environment that we are facing, establishing a comprehensive system of bridge health monitoring is necessary. Jia-Sian Bridge was taken as a target bridge in the present study, which is located in Kaohsiung city, Taiwan. The acceleration signals under the ambient vibration were actually collected, then the dynamic characteristics of the bridge were estimated through peak-picking method (PP) and frequency domain decomposition method (FDD). Midas civil 2016 was used to establish initial finite model, the study also modeled the soil-structure interaction between site and pile through inputting appropriate subgrade coefficient. Due to the complication and deterioration of the actual structure, there is an error exists between the dynamic characteristics of the initial model and the actual measurement, the initial finite element model was updated based on the modal frequency identified by the field test. First, the sensitivity analysis was done to determine the updated parameters. Then, the genetic algorithm (GA) is used to adjust the structural parameters. After model updating, it successfully sought the best structural parameters to make the model modal frequency coincide with the results of field test.

    摘要 I Abstract II 致謝 VI 目錄 VIII 表目錄 XI 圖目錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1 模態分析 5 2.1.1 唯輸出系統識別法 6 2.2 模型更新 8 2.2.1 有限元素模型更新方法 8 2.3 結構健康檢測 10 2.3.1 結構健康檢測相關研究 11 2.4 土壤結構體交互作用 15 2.4.1 土壤結構體交互作用模擬方法 15 2.4.2 土壤結構體交互作用相關研究 17 第三章 研究方法與理論 19 3.1 現地試驗 19 3.1.1 甲仙大橋 19 3.1.2 試驗儀器 21 3.1.3 試驗方法 23 3.2 識別方法 24 3.2.1 峰值挑選法 24 3.2.2 頻率域分解法 26 3.3 有限元素模型 27 3.3.1 有限元素分析程式-MIDAS Civil 2016 27 3.3.2 基本有限元素模型建立程序 27 3.3.3 土壤結構體交互作用模型建立 29 3.4 模型更新最佳化演算法 39 3.4.1 基因演算法原理 39 3.4.2 基因演算法步驟 40 第四章 研究結果 43 4.1 系統識別 43 4.1.1 分跨獨立分析 44 4.1.2 識別方法驗證 47 4.1.3 甲仙大橋識別結果 57 4.1.4 識別結果檢核 64 4.2 模型更新 68 4.2.1 初始有限元素模型 69 4.2.2 敏感性分析 79 4.2.3 基因演算法更新結果 88 4.2.4 模型更新檢核 102   第五章 結論與建議 108 5.1 結論 108 5.2 建議 111 參考文獻 113 附錄A 現地量測資料 118 A.1 加速度歷時 118 A.1.1 106/01/15量測成果 118 A.1.2 106/04/27量測成果 123 A.2 傅氏譜 128 A.2.1 106/01/15量測成果 128 A.2.2 106/04/27量測成果 133 附錄B 分段歷時檢核 138 B.1 第一跨分段檢核 138 B.2 第二跨分段檢核 139 B.3 第三跨分段檢核 141 附錄C 敏感性分析 142 C.1 第二跨分敏感性分析 142 C.2 第三跨分敏感性分析 145

    [1] 秦志昌, "模態分析在故障診斷和狀態監測中的應用," 山東科技大学, 2011.
    [2] 梁君 and 趙登峰, "工作模態分析理論研究現狀與發展," 電子機械工程, vol. 22, 2006.
    [3] 高維遠, "多跨橋樑動態特徵之有限元素模型更新," 國立成功大學, 2015.
    [4] J. He and Z.-F. Fu, Modal Analysis vol. 1: Reed Educational and Professional Publishing Ltd, 2001.
    [5] 任偉新, "環境振動系統識别方法的比較分析," 福州大學學報(自然科學版), vol. 29, 2001.
    [6] 張家盛, "演化演算法於多跨鋼拱橋之有限元模型更新," 國立成功大學, 2016.
    [7] 黃進國, "梁結構損傷偵測," 國立中央大學, 1999.
    [8] D. Ribeiro, R. Calçada, R. Delgado, M. Brehm, and V. Zabel, "Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters," Engineering Structures, vol. 40, pp. 413-435, 2012.
    [9] B. Jaishi, H.-J. Kim, M. K. Kim, W.-X. Ren, and S.-H. Lee, "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility," Mechanical Systems and Signal Processing, vol. 21, pp. 2406-2426, 2007.
    [10] A. Teughels, G. De Roeck, and J. A. K. Suykens, "Global optimization by coupled local minimizers and its application to FE model updating," Computers & Structures, vol. 81, pp. 2337-2351, 2003.
    [11] Y. B. Yang and Y. J. Chen, "A new direct method for updating structural models based on measured modal data," Engineering Structures, vol. 31, pp. 32-42, 2009.
    [12] J. H. Holland, Adaptation in Natural and Artificial Systems. MA, USA: University of Michigan Press, 1975.
    [13] T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms: Oxford University Press Oxford, UK, 1996.
    [14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA Addison-Wesley Longman Publishing Co., Inc. , 1989.
    [15] 張巍贏, "桁架結構最佳化設計使用基因演算法與窄化空間技術," 國立交通大學, 2007.
    [16] B. Peeters, "System identification and damage detection in civil engineering," Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, p. 233, 2000.
    [17] W.-H. Hu, E. Caetano, and Á. Cunha, "Structural health monitoring of a stress-ribbon footbridge," Engineering Structures, vol. 57, pp. 578-593, 2013.
    [18] C. R. Farrar, S. W. Doebling, and D. A. Nix, "Vibration-based structural damage identification," The Royal Society, vol. 359, pp. 131-149, 2001.
    [19] M. Feng, D. Kim, J. Yi, and Y. Chen, "Baseline models for bridge performance monitoring," Journal of Engineering Mechanics, vol. 130, pp. 562-569, 2004.
    [20] F. Benedettini and C. Gentile, "Operational modal testing and FE model tuning of a cable-stayed bridge," Engineering Structures, vol. 33, pp. 2063-2073, 2011.
    [21] A. Bayraktar, A. C. Altunişik, and T. Türker, "Structural health assessment and restoration procedure of an old riveted steel arch bridge," Soil Dynamics and Earthquake Engineering, vol. 83, pp. 148-161, 2016..
    [22] X. Li, D.-Y. Zhang, W.-M. Yan, W.-C. Xie, and M. D. Pandey, "Effects of model updating on the estimation of stochastic seismic response of a concrete-filled steel tubular arch bridge," Structure and Infrastructure Engineering, vol. 10, pp. 1620-1637, 2014.
    [23] H. Minshui and Z. Hongping, "Finite element model updating of bridge structures based on sensitivity analysis and optimization algorithm," Wuhan University Journal of Natural Sciences, vol. 13, pp. 87-92, 2008.
    [24] A. Morassi and S. Tonon, "Dynamic testing for structural identification of a bridge," Journal of bridge engineering, vol. 13, pp. 573-585, 2008.
    [25] R. Jafarkhani and S. F. Masri, "Finite element model updating using evolutionary strategy for damage detection," Computer‐Aided Civil and Infrastructure Engineering, vol. 26, pp. 207-224, 2011.
    [26] B. Jaishi and W.-X. Ren, "Structural finite element model updating using ambient vibration test results," Journal of Structural Engineering, vol. 131, pp. 617-628, 2005.
    [27] N. R. Polanco, G. May, and E. M. Hernandez, "Finite element model updating of semi-composite bridge decks using operational acceleration measurements," Engineering Structures, vol. 126, pp. 264-277, 2016.
    [28] S. Jang, J. Li, and B. F. Spencer Jr, "Corrosion estimation of a historic truss bridge using model updating," Journal of Bridge Engineering, vol. 18, pp. 678-689, 2012.
    [29] R. Cantieni, M. Brehm, V. Zabel, T. Rauert, and B. Hoffmeister, "Ambient testing and model updating of a filler beam bridge for high-speed trains," in Proceedings of 7th European Conference on Structural Dynamics (EURODYN), Southampton, UK, 2008, pp. 7-9.
    [30] Q. Zhang, T.-Y. P. Chang, and C. C. Chang, "Finite-element model updating for the Kap Shui Mun cable-stayed bridge," Journal of Bridge Engineering, vol. 6, pp. 285-293, 2001.
    [31] H. Li, J. Ou, X. Zhao, W. Zhou, H. Li, Z. Zhou, et al., "Structural health monitoring system for the Shandong Binzhou Yellow River highway bridge," Computer‐Aided Civil and Infrastructure Engineering, vol. 21, pp. 306-317, 2006.
    [32] B. J. A. Costa, F. Magalhães, Á. Cunha, and J. Figueiras, "Modal analysis for the rehabilitation assessment of the Luiz I Bridge," Journal of Bridge Engineering, vol. 19, p. 05014006, 2014.
    [33] 陳正興, "行政院原子能委員會委託研究計畫研究報告," No. 932001INER004, 台北, 2004.
    [34] 謝旭昇, 程日晟, 蔡宗鍠, and 楊明洲, "連續壁設計分析之實務考慮," 地工技術, pp. 35-44, 1996.
    [35] M. Dicleli and S. Erhan, "Effect of soil and substructure properties on live-load distribution in integral abutment bridges," Journal of Bridge Engineering, vol. 13, pp. 527-539, 2008.
    [36] D. Perić, M. Miletić, B. R. Shah, A. Esmaeily, and H. Wang, "Thermally induced soil structure interaction in the existing integral bridge," Engineering Structures, vol. 106, pp. 484-494, 2016.
    [37] B. Soneji and R. Jangid, "Influence of soil–structure interaction on the response of seismically isolated cable-stayed bridge," Soil Dynamics and Earthquake Engineering, vol. 28, pp. 245-257, 2008.
    [38] S. Faraji, J. M. Ting, D. S. Crovo, and H. Ernst, "Nonlinear analysis of integral bridges: finite-element model," Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, pp. 454-461, 2001.
    [39] J. Zheng and T. Takeda, "Effects of soil-structure interaction on seismic response of PC cable-stayed bridge," Soil Dynamics and Earthquake Engineering, vol. 14, pp. 427-437, 1995.
    [40] J. Zhang, J. Prader, K. Grimmelsman, F. Moon, A. Aktan, and A. Shama, "Experimental vibration analysis for structural identification of a long-span suspension bridge," Journal of Engineering Mechanics, vol. 139, pp. 748-759, 2012.
    [41] S. Ju, "Determination of scoured bridge natural frequencies with soil–structure interaction," Soil Dynamics and Earthquake Engineering, vol. 55, pp. 247-254, 2013.
    [42] S. Gade, N. Møller, H. Herlufsen, and H. Konstantin-Hansen, "Frequency domain techniques for operational modal analysis," presented at the IMAC-XXIV Conference and Exposition on Structural Dynamics, 2006.
    [43] N. Subramanian, Design of steel structures: Oxford University Press, 2008.
    [44] G. Lindfield, J. Penny, and 黃俊銘(編譯), 數值方法─使用MATLAB程式語言第二版: 全華圖書股份有限公司 2001.
    [45] K. F. Man, K. S. Tang, and S. Kwong, Genetic Aigorithms:Concepts and Designs, 3 ed.: Springer-Verlag London Ltd., 2001.

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE