| 研究生: |
林義軒 Lin, Yi-Xuan |
|---|---|
| 論文名稱: |
薑黃素與去甲基薑黃素對大白鼠水晶體蛋白活體外抗紫外線之研究 The In Vitro Study of Curcumin and Demethylated Curcumin in Preventing Rat Lens Crystallins from UV Damage |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | α水晶體蛋白 、薑黃素 、伴護活性 、UVA |
| 外文關鍵詞: | alpha-crystallin, curcumin, chaperone-like activity, UVA |
| 相關次數: | 點閱:64 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
紫外光是造成白內障重要原因之一,而真正影響水晶體蛋白的是紫外光波長範圍是 (UVA),水晶體暴露在UVA環境下,會進行光氧化反應,產生活性氧物質,使胺基酸被氧化,破壞蛋白質結構與活性。
薑黃素與去甲基薑黃素則具有捕捉與抑制自由基能力,將其添加入α水晶體蛋白中,進行照光實驗,並利用圓二色光譜,探討蛋白質二級結構變化;利用Trp螢光光譜及ANS螢光光譜,了解蛋白質Trp環境變化與表面疏水性暴露改變;利用DTT誘導胰島素集結來測試伴護活性能力。
利用圓二色光譜探討照光影響下隨時間變化關係,在波長222nm,時間對橢圓率作圖可以得到一條型曲線,其中反摺點位置在第七小時,此時的結構穩定度最差,變化最明顯。在DPPH自由基抓取能力測試中,去甲基薑黃素比薑黃素抗氧化能力強約1.8倍,利用紫外光/可見光譜儀測試UVA波長範圍的吸收值,甲氧基薑黃素比薑黃素強約兩倍,探討以上兩個實驗結果與抑制紫外光傷害水晶體蛋白相關性,做蛋白質性質與結構出現明顯的變化:由圓二色光譜結結果來看,添加去甲基薑黃素的α水晶體蛋白二級結構變化最小,保護能力勝過薑黃素,且添加的化合物濃度高,效果較佳;Trp螢光與ANS螢光光譜結果都顯示去甲基薑黃素的添加效果較佳,使α水晶體蛋白疏水性變化趨緩(增加或減少);伴護活性測試結果則呼應ANS螢光測試的結果,隨著照光時間增加,表面疏水性下降,伴護活性也會下降,相較於一般α水晶體蛋白照光實驗,添加去甲基薑黃素實驗組則是隨著時間增加伴護活性下降變化更小,優於薑黃素實驗組。
實驗結果顯示:在照光實驗中,紫外光所誘導的活性氧物質會影響蛋白質,因此添加化合物具有(1)強自由基抓取能力、(2)紫外光UVA波長範圍吸收能力強特質,對於保護α水晶體蛋白受到紫外光影響有正相關性。
UVA(320nm-380nm) is a foreign stress to cause the damage of lens through photo-oxidation to produce active species, which in turn resulting in the modification of the lens crystalline residues as to lose its proper structure and chaperoning activity of the alpha-crystallin, and finally leads to the formation of lens cataract.
Curcumin has been known as an antioxidant to scavenge the free radicals. And we have found that demethylated curcumin showed better bioactivity in protecting lens from selenite damage. Therefore, in this study, we focus on the effects of these two compound on the prevention of lens crystallins from UV damage by employing Circular Dichroism (CD)to investigate the UV induced structural change of lens crystallins, also to measure the ANS and tryptophan fluorescence to investigate the hydrophobic exposure, and finally bio-assaying the chaperone activity of the UV irradiated alpha-cystallin with or without the presence of curcumin and demethylated curcumin.
The stability of rat lens alpha-crystallin determined by CD measured at 222 nm showed the stability reflection of irradiation time (TM) fitted into the sigmoidal equation was 7 hours. It was found that the UVA absorbance for demethylated curcumin was two-fold of curcumin and the ability to scavenge free radical was 80% higher for demethylated curcumin when compared to curcumin. With the increase of irradiation time, the surface hydrophobicity of alpha-crystallin decreased, which was consistent with the chaperone-like activity of alpha-crystallin toward the DTT-induced insulin B aggregation. And it was also found that the demethylated curcumin showed better chaperone-like activity.
1. V.L. Taylor, K.J.A.-G., and M.J. Costello, Morphology of the normal human lens. Invest. Ophthalmol. Vis. Sci., 1996. 37: p. 1396-1410.
2. Norledge, B.V., Mary, E., M., Glockshuber, R., Bateman, O. A., Slingsby, C., Jaenicke, R., Driessen, H. P. C., The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins. Nat. Struct. Biol., 1996. 3: p. 267-274.
3. N.S.Jffe , J.H., Anatomy and embryology,in S. M. Podos and M. Yanoff(ed.), "Lens and Cataract", New York, Gower Medical Publishing, chapter 1. 1992: p. pp.1-7.
4. Clayton, R.M., Developmental genetics of the lens, in H. Maisel(ed):"The Ocular Lens", New York, Marcel Dekker, chapter2. 1992: p. 61-92.
5. Horwitz, J., Alpha-crystallin. Exp. Eye Res., 2003. 76: p. 145-153.
6. Y, O., The oxidative Stress in the cataract formation Nippon Ganka Gakkai Zasshi, 1995. 99(12): p. 1303-1341.
7. Andley, U.P., Effects of α-Crystallin on Lens Cell Function and Cataract Pathology. Curr Mol Med, 2009. 9: p. 887-892.
8. R. F. Borkman, M., The molecular chaperone function of α-crystallin is impaired by UV photolysis. Photochem. Photobio., 1995. 62: p. 1046-1051.
9. van Der Ouderaa, F.J., de Jong, W. W., Hilderrink, A., Bloemendal, H., The amino acid sequence of the alphaB2 chain of bovine alpha-crystaliin Eur. J. Biochem, 1974. 49: p. 157-168.
10. vAn Der Ouderaa, F.J., de Jong, W. W., Bloemendal, H., The amino acid sequence of the alphaA2 chain of bovine alpha-crystallin. Eur. J. Biochem, 1973. 39: p. 207-222.
11. Bhat, S.P., Nagineni,C. N., αB subunit of lens-specific protein α-crystallin is present in other ocular and non-ocular and non-ocular tissues. Biochim. Biophys. Res. Commun, 1989. 158: p. 319-325.
12. Derham, B.K., Harding, J. J., α-Crystallin as a molecular chaperone. Prog, Ret. Eye Res., 1999. 18: p. 463-509.
13. Liang, J.N., Chakrabarti, B., Spectroscopic investigation of bovine lens crystallin.Circular dichroism and intrinsic fluorescence. biochemistry, 1982. 30(35): p. 8653-8660.
14. Singh, K., Zewge, D., Groth-Vasseli, B., Farnsworth, P. N., A comparsion of structural relationships among α-crystallin, human HSP27, γ-crystallins and β-B2-crystallin. Int. J. Biol. Macromol, 1996. 19: p. 227-233.
15. R. J. Siezen, P.A., Structural similarity of lens crystallins. Secondary structure estimation from circular dichroism and prediction from amino acid sequences. Biochem. Biophys. Acta, 1983. 748: p. 56-67.
16. J.A. Carver, J.A.A., R. J. W. Truscott, An investigation into the stability of α-crystallin by NMR spectroscopy;evidence for a two-domain structure. Biochem. Biophys. Acta, 1993. 1164: p. 22-28.
17. Wistow, G.J., A possible quaternary structure for crystallins and small heat-shock proteins. Exp. Eye Res., 1993. 58: p. 729-732.
18. Puri, N., Augusteyn, R. C., Owen, E. A., Siezen, R. J., Immunochemical properties of vertebrate α-crystallin. Eur. J. Biochem, 1983. 134: p. 321-323.
19. Ingolia, T.D., Craig, E. A., Four small heat-shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. USA, 1982. 79: p. 2360-2364.
20. Horwitz, J., α-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA, 1992. 89: p. 10449-10453.
21. Wang, K., Sepctor, α-crystallin can act as a chaperone under conditions of oxidative stress. Invest. Ophthalmol. Vis. Sci., 1995. 36: p. 311-321.
22. Borkman, R.F., Knight, G., Obi, B., The molecular chaperone α-crystallin inhibits UV-induced protein aggregation. Exp. Eye Res., 1996. 62: p. 141-148.
23. Smulder, R.H., de Jong, W. W., The hydrophobic probe 4,4'-bis(1-anilino-8-naphthalene solfonic acid) is specifically photoincorporated into the N-terminal domain αB-crystallin. FEBS Lett., 1997. 409: p. 101-104.
24. A. C. John, A.N.K., J.A. Nicholls, Age-related chage in bovine α-crystallin and high-molecular-weight Protein. Exp. Eye Res., 1996. 63: p. 639-647.
25. O. P. Srivastava, K.S., C. Silney, Levels of crystallin fragment and identification of their origin in water soluble high molecular weight(HMW) proteins of human lenses. Curr. Eye Res., 1996. 15: p. 511-520.
26. Bours., J., Calf lens α-crystallin, a molecular chaperone, builds stable complex with β- and γ-crystallins. Ophthalmic Res., 1996. 28: p. 23-31.
27. G. Wistow, C.S., T.Blundell, Eye-lens protein: tke three dimension structure of β-crystallin predicted from monomeric γ-crystallin. FEBS Lett., 1981. 133: p. 9-16.
28. M. K. Duncan, J.B.M., J. P. Piatigorsky, Sequence and express of chicken βA2-and βB3-crystallins. Exp. Eye Res., 1996. 62: p. 111-119.
29. H. J. M. Arts, E.H.M.J., G. van Willigen, N. H. Lubsen, J. G. G. Schoenmakers, Different evolution rats within lens-specific β-crystallin gene family. J.Mol. Evol., 1989. 28: p. 313-321.
30. Blundell, T., Lindley, P., Miller, L., Moss, D.,Slingsby, C., Tickle, I. Turnell, B., Wistow, G., The molecular structure and stability of the eye lens: X-rays analysis of γ-crystallin. Nature., 1981. 289: p. 771-777.
31. Norledge, B.V., Hay, R. E., Bateman, O. A., Slingsby, C., Driessen, Towards a molecular understanding oh phase separation in the lens: a comparsion of the X-ray structures of two high Tc γ-crystallins, γE and γF, with two low Tc γ-crystallins, γB and γD. Exp. Eye Res., 1997. 65: p. 609-630.
32. Zigman, S., The role of sunlight in human cataract formation. Surv. Ophthalmol, 1983. 27: p. 317-325.
33. S. Zigman, M.D., E. Torczynski, Sunlight and human cataract. Invest. Ophthalmol. Vis. Sci., 1979. 18: p. 462-467.
34. Borkman, R.F., Li, D.Y., Photodamage to self lens in vitro excimer laser radiation at 308, 337, and 350nm. Invest. Ophthalmol. Vis. Sci., 1990. 31: p. 2180-2184.
35. Gorgels TG, v.N.D., Spectral transmittance of the rat lens. Vision Res., 1992. 32(8): p. 1509-1512.
36. Zigman, S., Environmental near-UV radiation and cataracts. Optometry and Vision Science, 1995. 72: p. 899-901.
37. Heyningen, v., Fluorescent Glucoside in the Human Lens. Nature 1971. 230: p. 393 - 394
38. Heyningen, V., The glucoside of 3oh-kynurenine and other fluorescent compound in human lens. Exp. Eye Res., 1973. 15(1): p. 121-126.
39. Walrant, P., Santus, R., N-formy-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem. Photobiol., 1974. 19(6): p. 411-417.
40. V., B.R., Excited States and Free Radical in biology and Medicine. 1993: p. 253-259.
41. V., B.R., Excited States and Free Radicals in biology and Medicine. 1993: p. 102-141.
42. Andley, U.P., Sutherland, P., Ling, J. N., Chakrabarti, B., Changes in tertiary structure of calf-lens alpha-crystallin by near-irradiation: role of hydrogen peroxide. Photochem. Photobiol., 1984. 40(3): p. 343-349.
43. Zigler, J.S.J., J. D. Goosey, Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens. Photochem. Photobiol., 1981. 33: p. 869-874.
44. Andley, U.P., Weber, J. G., Ultraviolet action spectra for photobiological effects in cultured human lens epithelial cells. Photochem. Photobiol., 1995. 62(5): p. 840-846.
45. Fujimori, E., Crosslinking and blue-fluorescence of photo-oxidized caif-lens α-crystallin. Exp. Eye Res., 1982. 34: p. 381-388.
46. Marilyn Ehrenshaft1, B.Z., Usha P. Andley, Ronald P. Mason, Joan E. Roberts, Immunological Detection of N-formylkynurenine in Porphyrin Mediated Photooxided Lens α-crystallin. Photochem Photobiol., 2011. 87(6): p. 1321-1329.
47. van Holde, K.E., Johnson, W. C., Ho, P. S., Principales of physical Biochemistry pPearson Education, 2006.
48. Abhijit Mazumder, N.N., Sanjay Sunder, Jutta Schulz, Heinz Pertz, Eckart Eich,, Yves Pommier, Curcumin Analogs with Altered Potencies against HIV-1 Integrase as Probes for Biochemical Mechanisms of Drug Action. J. Med. Chem., 1997. 40: p. 3057-3063
49. C., Z.N., Biological evaluation of curcumin and related diarylheptanoids. Z Naturforsch C., 2006 61: p. 625-631.
50. Hyun Jung Lee, J.W.S., Bong Ho Lee, Kyoo-Hyun Chunga, Dae Yoon Chi, Syntheses and radical scavenging activities of resveratrol derivatives. Bioorganic & Medicinal Chemistry Letters, 2004. 14 p. 463–466.
51. Tomáš Siatka, M.K., Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers. Molecules, 2010. 15: p. 9450-9461
52. Patel Rajesh M., P.N.J., In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods Journal of Advanced Pharmacy Education & Research, 2011 1: p. 52-68.
53. Roger J.W. Truscott, A.M.W., John A. Carver, Margaret M. Sheil, Glen M. Stutchbury, Jiulin Zhu, Greg W. Kilby, A new UV-filter compound in human lenses. FEBS Letters., 1994. 348: p. 173-176
54. Andrea Hawe, M.S., Wim Jiskoot, Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharmaceutical Research, 2008. 25: p. 1487-1499.
55. Daumantas Matulis, C.G.B.V.A.B.R.E.L., 1-Anilino-8-Naphthalene Sulfonate as a Protein Conformational Tightening Agent. Institute of Biochemistry, 1999. 49: p. 451-458.
56. Orly Weinreb, M.A.M.v.B., Ahuva Dovrat, Hans Bloemendal, Effect of UV-A Light on the Chaperone-like Properties of Young and Old Lens a-Crystallin. IOVS, 2000. 41: p. 191-198.
57. G. Bhanuprakash Reddy, P.Y.R., A. Vijayalakshmi, M. Satish Kumar, P. Suryanarayana, B. Sesikeran, Effect of long-term dietary manipulation on the aggregation of rat lens crystallins: Role of α-crystallin chaperone function. Molecular Vision, 2002. 8: p. 298-305
58. Prajay Dhir, N.J.A., Tian Xiao Sun, Jack J. N. Liang, Photooxidized Products of Recombinant aA-Crystallin and W9F Mutant. Photochemistry and Photobiolog, 1999. 69(3): p. 329-335.
59. L., T., Increase in the intramolecular disulfide bonding of alpha-A crystallin during aging of the human lens. Exp. Eye Res., 1996. 63: p. 585-690.
60. P. Anil Kumar, P.S., P. Yadagiri Reddy, G. Bhanuprakash Reddy, Modulation of α-crystallin chaperone activity in diabetic rat lens by curcumin. Molecular Vision, 2005. 11: p. 561-568.
61. T. Mahesh, M.S.B., Venugopal P. Menon., Effect of Photo-Irradiated Curcumin Treatment Against Oxidative Stress in Streptozotocin-Induced Diabetic Rats. J Med Food, 2005. 8(2): p. 251–255.
62. Wen-Hsiung Chan, C.-C.W., Jau-Song Yu, Curcumin Inhibits UV Irradiation-Induced Oxidative Stress and Apoptotic Biochemical Changes in Human Epidermoid Carcinoma A431 Cells. Journal of Cellular Biochemistry, 2003. 90: p. 327–338.
63. Frank J. Giblin, L.-R.L., Mukoma F. Simpanya, Victor R. Leverenz, Catherine E. Fick, A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo. Exp. Eye Res., 2012. 102 p. 17-27.
64. Jiahn-Haur Liao, J.S.L., Shyh-Horng Chioua,c,, Distinct roles of aA- and aB-crystallins under thermal and UV stresses. Biochemical, Biophysical Research Communications, 2002. 295: p. 854–861
65. Indira K. Priyadarsini, D.K.M., G. H. Naik, Sudheer M. Kumar, M. K. Unnikrishnan, J. G. Satav, Hari Mohan, Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology and Medicine, 2003. 35: p. 475-484.
66. Wood AM, T.R., Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vision Res., 1994. 11: p. 1369-1374.
67. G. Bhanuprakash Reddy, K.S.B., UVB irradiation alters the activities and kinetic properties of the enzymes of energy metabolism in rat lens during aging. Journal of Photochemistry and Photobiology B: Biology, 1998. 42: p. 40-46.
68. Noriko Fujii, H.U., Takeshi Saito, The damaging effect of UV-C irradiation on lens α-crystallin. Molecular Vision, 2004. 10: p. 814-820.
69. Ker-Ming Yan, S.-H.H., D. Subhan, Fu-Yung Huang, Temperature Effects on Structural and Functional Properties of Rat Lens Phe71 Mutant A-Crystallins. Journal of the Chinese Chemical Society, , 2008. 55: p. 1001-1010
70. Pang, M., Su, J.T., Feng, S., Tang, Z.W., Gu, F., Zhang, M., Ma, X., Yan, Y.B., Effects of congenital cataract mutation R116H on αA-crystallin structure, function and stability. 2010. 1804(4): p. 948-956.
71. Eftink, M.R., Topics in Fluorescence Spectroscopy. In Intrinsic Fluorescence of Proteins. Vol.6 Protein Fluorescence. Kluwer Academic/ Plenum Publishers, New York, 2000.
72. Sheehan, D., Physical Biochemistry: principles and applications. 2 edit, Wiley-Blackwell, Singapore, 2009.
73. Jiahn-Haur Liao, T.-H.W., Feng-Lin Hsu, Yi-Shiang Huang, Po-Hung Chiang, Zih-You Huang, Chi-Hsien Huang, Shih-Hsiung Wu , Mei-Hsiang Lin, Anti-UVC Irradiation and Metal Chelation Properties of 6-Benzoyl-5,7-dihydroxy-4-phenyl-chromen-2-one: An Implications for Anti-Cataract Agent. Int. J. Mol. Sci., 2011. 12: p. 7059-7076.
74. Chao-Chien Hu, J.-H.L., Kuang-Yang Hsu, I-Lin Lin, Ming-Hsuan Tsai, Wen-Hsin Wu, Tzu-Tang Wei, Yi-Shiang Huang, Shih-Jiuan Chiu, Hsiang-Yin Chen, Shih-Hsiung Wu, Tzu-Hua Wu, Role of pirenoxine in the effects of catalin on in vitro ultravioletinduced lens protein turbidity and selenite-induced cataractogenesis in vivo. Molecular Vision, 2011. 17: p. 1862-1870.
75. McDermott, M., Chiesa, R., Roberts, J. E., Dillon, J., Photooxidation of specific residues in alpha-crystallin polypeptides. Biochemistry, 1991. 30(35): p. 8653-8660.
76. B. JOE, M. VIJAYKUMAR, B. R. LOKESH, Biological Properties of Curcumin-Cellular and Molecular Mechanisms of Action. Critical Reviews in Food Science and Nutrition, 2004. 44: p. 97–111.