簡易檢索 / 詳目顯示

研究生: 李承軒
Lee, Chen-Hsuan
論文名稱: 帶正電陰陽離子液胞及其與DNA形成之複合物的物理穩定性
Physical stability of positively charged catanionic vesicles and the vesicle/DNA complexes
指導教授: 張鑑祥
Chang, Chien-Hsiang
楊毓民
Yang, Yu-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 離子對雙親分子陰陽離子液胞陰陽離子液胞/DNA複合物液胞雙層膜基因轉染
外文關鍵詞: catanionic vesicle, catanionic vesicle/DNA complexes, vesicular bilayer
相關次數: 點閱:101下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用等莫耳比例混合的陽離子型界面活性劑hexadecyltrimethylammonium bromide (HTMAB)與陰離子型界面活性劑sodium dodecylsulfate (SDS)生成離子對雙親分子(ion pair amphiphile, IPA) hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS)。然後以強制性製程由HTMA-DS和雙十四碳鏈陽離子型界面活性劑ditetradecyldimethylammonium bromide (DTDAB)製備出帶正電的陰陽離子液胞。為了提升液胞的基因轉染效率,先探討鈣離子的存在對陰陽離子液胞物化特性的影響,再探討陰陽離子液胞與DNA混合所形成之複合物的物化特性。所使用的分析方法包括粒徑/界面電位分析法、穿透式電子顯微鏡法、傅立葉紅外光譜法、Langmuir單分子層行為分析法、DNA電泳法及螢光偏極化法。
    結果顯示鈣離子的加入會改變分散液中液胞間的靜電斥力,而降低液胞的物理穩定性。然而透過膽固醇的添加,可避免因鈣離子所造成的液胞物理穩定性下降。進一步分析顯示,液胞的物理穩定性除了與液胞間的靜電斥力有關外,膽固醇於液胞雙層膜中可增加液胞組成分子的運動性,而能調整分子的排列達到促進液胞物理穩定性的效果。
    陰陽離子液胞與DNA的複合行為明顯與混合比例有關。由DNA電泳實驗可發現,當液胞與DNA的混合比例為30:1時,DNA可與液胞完全結合形成複合物。降低混合比例可使複合物帶負電,反之則獲得帶正電的複合物。此外,液胞分散液經稀釋後會降低液胞的物理穩定性。藉由螢光偏極化法的分析,可發現當液胞分散液稀釋後,液胞雙層膜中分子的運動性會隨著時間逐漸減少,使得液胞的物理穩定性降低。這可能是因為稀釋使得HTMA+由液胞溶出於分散相中的數目增加,而減低了液胞表面的電荷密度。
    高濃度的液胞與DNA混合形成的帶正電複合物,其物理穩定性會因為複合物之間的靜電斥力不足而產生聚集現象。在低混合比例下所形成的液胞/DNA複合物中,則因液胞分散液經稀釋後所造成雙層膜內分子排列特性的改變,而導致複合物物理穩定性的下降。
    利用3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)分析法評估HTMA-DS/DTDAB與HTMA-DS/DTDAB/膽固醇混合系統所形成的陰陽離子液胞對HS68細胞的毒性,結果顯示與商用之基因轉染載體有類似的結果。進一步觀察綠色螢光蛋白基因於轉染後在細胞內的表現量,顯示以HTMA-DS/DTDAB混合系統所形成之陰陽離子液胞系統有做為基因轉染載體的潛力。分別改以雙十六碳鏈的dihexadecyldimethylammonium bromide (DHDAB)與雙十八碳鏈的dioctadecyldimethylammonium bromide(DODAB)取代雙十四碳鏈的DTDAB所製備出之陰陽離子液胞,並評估其對HEK細胞的毒性,發現含DHDAB的液胞有較低的細胞毒性,且有較佳的轉染效率。

    In this study, positively charged catanionic vesicles were fabricated from hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) with the addition of a double-chained cationic surfactant, dimethyldimyristylammonium bromide (DTDAB), by using a forced formation approach. The effects of Ca2+ on physical characteristics of the catanionic vesicles were investigated. Furthermore, physical characteristics of the catanionic vesicle/DNA complexes were explored. The results implied that the physical stability of the vesicles was not only related to the inter-vesicle electrostatic repulsion, but also to the molecular packing/interaction in the vesicular bilayers. The molecular fluidity of the vesicular bilayer could be enhanced with the additon of cholesterol, and the molecular packing became less ordered. The fluorescence polarization analysis suggested that the molecular fluidity of the vesicular bilayers was decreased with time when the vesicle dispersion was diluted, resulting in reduced physical stability. It was proposed that the dissolution of HTMA+ from the vesicles was enhanced by the dilution operation. Moreover, the vesicle surfaces were less charged and the vesicular bilayers became rigid.

    摘要 I Extended Abstract III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 示意圖 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 實驗材料與方法 5 2.1 材料 5 2.2 離子對雙親分子 (Ion pair amphiphiles, IPA)的製備 6 2.3 陰陽離子液胞的製備 6 2.3.1 強制性製程 (forced formation approach) 製備陰陽離子液胞 6 2.3.2 氯化鈣效應 7 2.3.3 液胞/DNA複合物 8 2.4 實驗方法 9 2.4.1 粒徑與界面電位 9 2.4.2 液胞形態分析 11 2.4.3 液胞雙層膜特性分析 12 2.4.3.1 FTIR 12 2.4.3.2 螢光偏極化 12 2.4.4 大腸桿菌E.coli DH5α的培養與質體pEGFP-C1的純化 14 2.4.5 DNA電泳分析 14 2.5 細胞毒性測試與基因轉染 16 2.5.1 細胞毒性測試 16 2.5.2 基因轉染 17 2.5.2.1 HS68細胞株之細胞毒性測試與基因轉染 17 2.5.2.2 HEK細胞株之細胞毒性測試與基因轉染 18 第三章 結果與討論 32 3.1 離子對雙親分子與帶正電陰陽離子液胞 32 3.2 膽固醇效應 41 3.3 液胞雙層膜內的分子排列/交互作用 49 3.4 陰陽離子液胞與DNA形成之複合物 55 3.4.1 陰陽離子液胞於HEPES緩衝溶液中的物理穩定性 55 3.4.2 液胞/DNA複合物物理穩定性及稀釋效應 60 3.4.3 DNA分子型態對於液胞/DNA複合物的影響 70 3.5 DNA電泳及電子顯微鏡分析液胞/DNA複合物的結合形態 72 3.6 陰陽離子液胞毒性測試與基因轉染 76 3.6.1 陰陽離子液胞毒性測試 76 3.6.2 陰陽離子液胞基因轉染 80 第四章 結論與建議 89 References 91 附錄 102 著作 108 一、 期刊 108 二、 研討會 110 自述 113

    1. Audouy S, Leij L, Hoekstra D, Molema G (2002) In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 19 (11):1599-1605. doi: 10.1023/A:1020989709019
    2. Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78 (1-3):259-266. doi:10.1016/S0168-3659(01)00494-1
    3. Angelova MI, Hristova N, Tsoneva I (1999) DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. Eur Biophys J 28 (2):142-150. doi:10.1007/s002490050193
    4. Prasmickaite L, Høgset A, Berg K (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. vol 73. Blackwell Publishing Ltd. doi:10.1562/0031-8655(2001)0730388eodpfu2.0.co2
    5. Sandhu A, Lam A, Frenske D, Palmer L, Johnston M, Cullis P (2005) Calcium enhances the transfection potency of stabilized plasmid-lipid particles. Anal Biochem 341(1):156-164
    6. Huang Y-Z, Gao J-Q, Chen J-L, Liang W-Q (2006) Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer. Colloids Surfaces B 49(2):158-164. doi:10.1016/j.colsurfb.2006.03.014
    7. Marchini C, Pozzi D, Montani M, Alfonsi C, Amici A, Amenitsch H, Sanctis SCD, Caracciolo G (2010) Tailoring lipoplex composition to the lipid composition of plasma membrane: A trojan horse for cell entry? Langmuir 26 (17):13867-13873. doi:10.1021/la1023899
    8. Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotech 21 (5):640-645. doi:10.1016/j.copbio.2010.07.003
    9. Sakurai F, Inoue R, Nishino Y, Okuda A, Matsumoto O, Taga T, Yamashita F, Takakura Y, Hashida M (2000) Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Control Release 66 (2-3):255-269. doi:10.1016/S0168-3659(99)00280-1
    10. Llères D, Weibel JM, Heissler D, Zuber G, Duportail G, Mély Y (2004) Dependence of the cellular internalization and transfection efficiency on the structure and physicochemical properties of cationic detergent/DNA/liposomes. J Gene Med 6 (4):415-428
    11. Foldvari M, Kumar P, King M, Batta R, Michel D, Badea I, Wloch M (2006) Gene delivery into human skin In Vitro using biphasic Lipid Vesicles. Curr Drug Deliv 3 (1):89-93. doi: 10.2174/156720106775197501
    12. Felgner J, Kumar R, Sridhar C, Wheeler C, Tsai Y, Border R, Ramsey P, Martin M, Felgner P (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269 (4):2550-2561
    13. Zelphati O, Nguyen C, Ferrari M, Felgner J, Tsai Y, Felgner PL (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 5:1272-1282. doi:10.1038/sj.gt.3300707
    14. Wheeler J, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang Y-P, Hope J, Scherrer P, Cullis PR (1999) Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 6:271-281
    15. Kim TW, Chung H, Kwon IC, Sung HC, Jeong SY (2001) Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharm Res 18 (1):54-60. doi:10.1023/A:1011074610100
    16. Tondre C, Caillet C (2001) Properties of the amphiphilic films in mixed cationic / anionic vesicles: a comprehensive view from a literature analysis. Adv Colloid Interface Sci 93:115-134. doi:10.1016/S0001-8686(00)00081-6
    17. Joensson B, Jokela P, Khan A, Lindman B, Sadaghiani A (1991) Catanionic surfactants: phase behavior and microemulsions. Langmuir 7 (5):889-895. doi:10.1021/la00053a013
    18. Filipovic-Vincekovic N, Bujan M, Dragcevic D, Nekic N (1995) Phase behavior in mixtures of cationic and anionic surfactants in aqueous solutions. Colloid Polym Sci 273 (2):182-188. doi:10.1007/bf00654016
    19. Menger FM, Binder WH, Keiper JS (1997) Cationic surfactants with counterions of glucuronate glycosides. Langmuir 13 (12):3247-3250. doi:10.1021/la970111k
    20. Chung Y-C, Lee H-J, Park J-Y (1998) Bilayer properties of the multiple-chain ion pair amphiphiles. Bull Korean Chem Soc 19:1249-1252
    21. Bhattacharya S, De S (1999) Vesicle formation from dimeric ion-paired amphiphiles. control over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation. Langmuir 15 (10):3400-3410. doi:10.1021/la9808770
    22. Blanzat M, Perez E, Rico-Lattes I, Lattes A (1999) Synthesis and anti-HIV activity of catanionic analogs of galactosylceramide. New J Chem 23 (11):1063-1065
    23. Chien CL, Yeh SJ, Yang YM, Chang CH, Maa JR (2002). J Chin Colloid Interface Soc 24:31
    24. Marques EF, Regev O, Khan A, Lindman B (2003) Self-organization of double-chained and pseudodouble-chanined surfactants: counterion and geometry effects. Adv Colloid Interface Sci 100-102:83-104. doi:10.1016/S0001-8686(02)00068-4
    25. Yu W-Y, Yang Y-M, Chang C-H (2005) Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures. Langmuir 21 (14):6185-6193. doi:10.1021/la046984d
    26. Yeh S-J, Yang Y-M, Chang C-H (2005) Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles. Langmuir 21 (14):6179-6184. doi:10.1021/la047207g
    27. Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interface Sci 147-148:18-35
    28. Marques EF, Brito RO, Silva SG, Rodriguez-Borges JE, Vale M, Gomes P, Araujo MJ, Soderman O (2008) Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: chain length symmetry effects. Langmuir 24 (19):11009-11017. doi:10.1021/la801518h
    29. Kuo J-H, Jan M-S, Chang C-H, Chiu H-W, Li C-T (2005) Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloids Surfaces B 41 (2-3):189-196. doi:10.1016/j.colsurfb.2004.12.008
    30. Bramer T, Dew N, Edsman K (2007) Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 59 (10):1319-1334. doi:10.1211/jpp.59.10.0001
    31. Rosa M, Miguel M, Lindman B (2007) DNA encapsulation by biocompatible catanionic vesicles. J Colloid Interf Sci 312:87-97. doi:10.1016/j.jcis.2006.07.084
    32. Rosa M, Moran M, Miguel M, Lindman B (2007) The association of DNA and stable catanionic amino acid-based vesicles. Colloids Surfaces A 301:361-375. doi: 10.1016/j.colsurfa.2006.12.082
    33. Bonincontro A, Falivene M, Mesa CL, Risuleo G, Pena MR (2008) Dynamics of DNA adsorption on and release from SDS-DDAB cat-anionic vesicles: a multiechnique study. Langmuir 24:1973-1978. doi: 10.1021/la701730h
    34. Kuo J-H, Chang C-H, Lin Y-L, Wu C-J (2008) Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles. Colloids Surfaces B 64 (2):307-313. doi:10.1016/j.colsurfb.2008.02.006
    35. Mel'Nikov SM, Dias R, Mel'Nikova YS, Marques EF, Miguel MG, Lindman B (1999) DNA conformational dynamics in the presence of catanionic mixtures. FEBS Letters 453 (1-2):113-118. doi:10.1016/S0014-5793(99)00699-7
    36. Lindman B, Mel'Nikov SM, Mel'Nikova, YS, Nylander T, Eskilsson K, Migual MG, Dias RS, Leal C (2002) DNA-lipid systems. An amphiphile self-assembly and polymer-surfactant perspective. Prog Colloid Polym Sci 120:52-63. doi: 10.1007/3-540-45291-5_8
    37. Dias RS, Lindman B, Miguel MG (2002) Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures. J Phys Chem B 106 (48):12608-12612. doi: 10.1021/jp020392r
    38. Dias RS, Lindman B, Miguel MG (2002) DNA interaction with catanionic vesicles. J Phys Chem B 106 (48):12600-12607. doi:10.1021/jp020391z
    39. Marques EF, Regev O, Khan A, Lindman B (2003) Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects. Adv Colloid Interface Sci 100-102:83-104. doi:10.1016/S0001-8686(02)00068-4
    40. Miguel MG, Pais AACC, Dias RS, Leal C, Rosa M, Lindman B (2003) DNA-cationic amphiphile interactions. Colloids Surfaces A 228 (1-3):43-55. doi:10.1016/S0927-7757(03)00334-0
    41. Xu L, Anchordoquy TJ (2008) Cholesterol domains in cationic lipid/DNA complexes improve transfection. BBA-Biomembranes 1778 (10):2177-2181. doi:10.1016/j.bbamem.2008.04.009
    42. Vlachy N, Touraud D, Heilmann J, Kunz W (2009) Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloids Surfaces B 70 (2):278-280. doi:10.1016/j.colsurfb.2008.12.038
    43. Lundberg D, Berezhnoy NV, Lu C, Korolev N, Su C-J, Alfredsson V, Miguel MG, Lindman B, Nordenskiold N (2010) Interactions between cationic lipid bilayers and model chromatin. Langmuir 26 (15):12488-12492. doi: 10.1021/la1014658
    44. Paecharoenchai O, Niyomtham N, Ngawhirunpat T, Rojanarata T, Yingyongnarongkul B-E, Opanasopit P (2012) Cationic niosomes composed of spermine-based cationic lipids mediate high gene transfection efficiency. J Drug Target 20 (9):783-792. doi:10.3109/1061186X.2012.716846
    45. Lam A, Cullis P (2000) Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. BBA-Biomembranes 1463 (2):279-290. doi: 10.1016/S0005-2736(99)00219-9
    46. Noguchi A, Hirashima N, Nakanishi M (2002) Cationic cholesterol promotes gene transfection using the nuclear localization signal in protamine. Pharm Res 19 (7):933-938. doi: 10.1023/A:1016449902541
    47. Tseng W-C, Tang C-H, Fang T-Y, Su L-Y (2007) Using disaccharides to enhance in vitro and in vivo transgene expression mediated by a lipid-based gene delivery system. J Gene Med 9 (8):659-667. doi: 10.1002/jgm.1063
    48. Zhang Z-Y, Wang W-J, Pan L-J, Xu Y, Zhang Z-M (2009) Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with non-invasive micro-test technique. World J Gastroenterol 15 (33):4150-4155. doi:10.3748/wjg.15.4150
    49. Ahmad J, Dwivedi S, Alarifi S, Al-Khedhairy AA, Musarrat J (2012) Use of beta-galactosidase (lacZ) gene alpha-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutat Res Genet Toxicol Environ Mutagen 747 (2):246-252. doi:10.1016/j.mrgentox.2012.06.002
    50. Omahoney JV, Adams TE (1994) Optimization of experimental-variables influencing reporter gene-expression in hepatoma-cells following calcium-phosphate transfection. DNA Cell Biol 13 (12):1227-1232. doi:10.1089/dna.1994.13.1227
    51. Weng L, Liu D, Li Y, Cao S, Feng Y (2004) An archaeal histone-like protein as an efficient DNA carrier in gene transfer. BBA-Proteins Proteomics 1702 (2):209-216. doi:10.1016/j.bbapap.2004.08.016
    52. Blume A (1996) Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr Opin Colloid Interface Sci 1 (1):64-77. doi:10.1016/S1359-0294(96)80046-X
    53. Giovagnoli S, Blasi P, Vescovi C, Fardella G, Chiappini I, Perioli L, Ricci M, Rossi C (2003) Unilamellar vesicles as potential capreomycin sulfate carriers: preparation and physicochemical characterization. AAPS PharmSci 4 (4):549-560. doi:10.1208/pt040469
    54. Hirsch-Lerner D, Barenholz Y (1998) Probing DNA-cationic lipid interactions with the fluorophore trimethylammonium diphenyl-hexatriene (TMADPH). BBA-Biomembranes 1370 (1):17-30. doi:10.1016/S0005-2736(97)00239-3
    55. Regelin AE, Fankhaenel S, Gurtesch L, Prinz C, von Kiedrowski G, Massing U (2000) Biophysical and lipofection studies of DOTAP analogs. BBA-Biomembranes 1464 (1):151-164. doi:10.1016/S0005-2736(00)00126-7
    56. Rodriguez-Pulido A, Martin-Molina A, Rodriguez-Beas C, Llorca O, Aicart E, Junquera E (2009) A theoretical and experimental approach to the compaction process of DNA by dioctadecyldimethylammonium bromide/zwitterionic mixed liposomes. J Phys Chem B 113 (47):15648-15661. doi:10.1021/jp906777g
    57. Munoz-Ubeda M, Rodriguez-Pulido A, Nogales A, Martin-Molina A, Aicart E, Junquera E (2010) Effect of lipid composition on the structure and theoretical phase diagrams of DC-Chol/DOPE-DNA lipoplexes. Biomacromolecules 11 (12):3332-3340. doi:10.1021/bm1008124
    58. Dan N (1998) The structure of DNA complexes with cationic liposomes-cylindrical or flat bilayers? BBA-Biomembranes 1369 (1):34-38. doi:10.1016/S0005-2736(97)00171-5
    59. Koltover I, Salditt T, Radler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78. doi:10.1126/science.281.5373.78
    60. Congiu A, Pozzi D, Esposito C, Castellano C, Mossa G (2004) Correlation between structure and transfection efficiency: a study of DC- chol- DOPE/DNA complexes Colloid Surface B 36:43-48. doi:10.1016/j.colsurfb.2004.04.006
    61. Pedraza CE, Bassett DC, McKee MD, Nelea V, Gbureck U, Barralet JE (2008) The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials 29 (23):3384-3392. doi:10.1016/j.biomaterials.2008.04.043
    62. Ravi Kumar MNV, Bakowsky U, Lehr CM (2004) Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 25 (10):1771-1777. doi:10.1016/j.biomaterials.2003.08.069
    63. New RRC (1990) Liposomes: a practical approach. Oxford University Press, New York
    64. Wu C-J, Chang C-H (2008) A study of the feasibility of using positively charged catanionic vesicles as DNA carriers. Master thesis, National Cheng Kung University, Tainan, Taiwan
    65. Fatouros DG, Piperoudi S, Gortzi O, Ioannou PV, Frederik P, Antimisiaris SG (2005) Physical stability of sonicated arsonoliposomes: effect of calcium ions. Journal of Pharmaceutical Sciences 94 (1):46-55. doi:10.1002/jps.20221
    66. Garcia-Manyes S, Oncins G, Sanz F (2005) Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys J 89 (3):1812-1826. doi:10.1529/biophysj.105.064030
    67. Wiącek AE (2011) Comparison of n-tetradecane/electrolyte emulsions properties stabilized by DPPC and DPPC vesicles in the electrolyte solution. Colloids Surfaces B 83 (1):108-115. doi:10.1016/j.colsurfb.2010.11.015
    68. Virden J, Berg J (1992) NaCl-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol. Langmuir 8:1532-1537. doi: 10.1021/la00042a007
    69. Kodati VR, Lafleur M (1993) Comparison between orientational and conformational orders in fluid lipid bilayers. Biophys J 64:163-170. doi:10.1016/S0006-3495(93)81351-1
    70. Kodati VR, El-Jastimi R, Lafleur M (1994) Contribution of the intermolecular coupling and librotorsional mobility in the methylene stretching modes in the infrared spectra of acyl chains. J Phys Chem 98:12191-12197. doi:10.1021/j100098a012
    71. Lewis R, McElhaney R (1998) The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy. Chem Phys Lipids 96:9-21. doi:10.1016/S0009-3084(98)00077-2
    72. Bhattacharya S, Haldar S (2000) Interactions between cholesterol and lipids in bilayers membranes. Role of lipid headgroup and hydrocarbon chain-backcone linkage. BBA-Biomembranes 1467:39-53. doi:10.1016/S0005-2736(00)00196-6
    73. McMullen TP, Lewis RN, McElhaney RN (2000) Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophys J 79:2056-2065. doi:10.1016/S0006-3495(00)76453-8
    74. Yeagle PL (1985) Cholesterol and the cell membrane. BBA-Reviews on Biomembranes 822:267-287. doi:10.1016/0304-4157(85)90011-5
    75. Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Peter Slotte J (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41 (1):66-97. doi:10.1016/S0163-7827(01)00020-0
    76. Li W-T, Yang Y-M, Chang C-H (2008) Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant. Colloids Surfaces B 66 (2):187-194. doi: 10.1016/j.colsurfb.2008.06.009
    77. Dias RS, Lindman B, Miguel MG (2002) DNA Interaction with Catanionic Vesicles. J Phys Chem B 106 (48):12600-12607. doi:10.1021/jp020391z

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE