簡易檢索 / 詳目顯示

研究生: 張晉嘉
Jhang, Jin-Jia
論文名稱: 以微控制器控制動圈式線性馬達驅動伺服閥之研究
A study of using MCU to control a hydraulic direct drive servo valve driven by moving coil linear motor
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 動圈式線性馬達延伸軸微控制器取樣時間自調式模糊控制直驅式伺服閥
外文關鍵詞: moving coil linear motor, extend valve shaft, MCU, sampling time, self-tunning fuzzy controller, direct drive servo valve
相關次數: 點閱:126下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液壓系統的性能主要取決於組成該系統的閥、泵和液壓馬達等各種流體控制元件的性能。因此提高流體控制元件的性能一直是液壓工程師的首要目標。
    本文目標為利用微控制器實現動圈式線性馬達驅動伺服閥軸,藉由不同的取樣時間去探討並研發一個直驅式高速響應之伺服閥。本文伺服閥體元件有動圈式線性馬達、馬達與閥軸間的聯軸器以及閥軸之延伸軸,實驗證明線性馬達可直接驅動閥軸,並改良加入延伸軸,使其達到精密定位且減少雜訊。配合本文使用之五口三位閥體,藉由實驗不同的取樣時間,確實會影響系統響應快慢,再利用本文參考文獻中所提及的自調式模糊控制器來做閥軸的定位控制實驗,其定位目標100%全行程下的上升時間在2.9ms內,穩態誤差1.3μm內,可藉由控制閥軸位移,改變閥口開度大小,以達到流量控制之效果。經由定位控制實驗看出,本文以微控制器直接驅動控制動圈式伺服閥可做為前導級高速線性直驅式伺服閥使用。

    The objective of this study is to use MCU to control a hydraulic direct drive servo valve driven by moving coil linear motor. The traditional common proportional solenoid, torque motors to do as a electric-machine transducer. Utilize MCU to control a hydraulic direct drive servo valve with different sampling time.The design contains the moving coil linear motor,coupling between motor and valve shaft, and extended valve shaft. The experiment proves that linear motor can direct drive spool valve achieve command position precisely. The three-position-five-way spool valve can also really achieve the different sampling time which can affect the system response. And in the controller design, we use self-tunning fuzzy controller to control the position of spool. Discuss the results, the rising time of controlling displacement of full stroke is smaller than 2.9ms and the steady error is smaller than 1.3μm. By controlling the displacement of the valve shaft can also achieve the effect of flow control. Through the experiment, this valve and MCU can be used to control direct drive servo valve.

    目錄 中文摘要..................................................................................I Abstract...................................................................................II 誌謝.........................................................................................X 目錄........................................................................................XI 表目錄...................................................................................XV 圖目錄...................................................................................XVI 符號說明................................................................................XIX 第一章 緒論..............................................................................1 1-1油壓工作原理與液壓閥簡介....................................................1 1-1-1機-液轉換器分類.................................................................2 1-1-2電-機轉換器分類.................................................................2 1-1-3液壓閥分類.........................................................................5 1-2 研究動機..............................................................................6 1-3 研究目的..............................................................................7 1-4 本文架構..............................................................................8 第二章系統架構、微控制器與動圈式線性馬達...............................9 2-1 油壓伺服閥系統整體架構.......................................................9 2-2 油壓伺服閥控制系統圖.........................................................10 2-3微控制器..............................................................................11 2-4微控制器MCU與特色.............................................................12 2-5 本文選用MCU之功能............................................................13 2-6 本文選用MCU之腳位圖.........................................................14 2-7單晶片與工業電腦之差別........................................................15 2-8動圈式線性馬達.....................................................................16 2-9動圈式線性馬達磁路種類........................................................17 2-10動圈式線性馬達作動原理......................................................19 2-11動圈式線性馬達作動方式......................................................22 第三章 機構設計與實驗設備........................................................23 3-1動圈式線性伺服閥機構...........................................................23 3-2伺服閥元件設計.....................................................................24 3-2-1閥殼設計............................................................................24 3-2-2襯套設計............................................................................25 3-2-3閥軸設計............................................................................27 3-2-4閥軸延長設計......................................................................30 3-3實驗設備...............................................................................31 第四章 伺服閥系統數學模型.........................................................36 4-1液壓閥數學模型......................................................................36 4-1-1流經孔口的流體質量流率......................................................36 4-1-2一般滑閥數學模型................................................................38 4-1-3作用在滑閥閥軸上的液流力...................................................40 4-1-4作用在滑閥閥軸上的液體摩擦力.............................................43 4-2動圈式線性馬達數學模型..........................................................44 4-3伺服閥系統之頻譜分析.............................................................45 4-4離散系統.................................................................................48 第五章 液壓伺服閥系統控制器設計.................................................52 5-1 非線性PID控制器之設計...........................................................52 5-1-1 PID控制法則........................................................................53 5-1-2離散PID控制器......................................................................54 5-2自調式模糊控制器之設計...........................................................55 5-2-1誤差邊界之設計.....................................................................57 5-2-2模糊歸屬函數的決定與建立.....................................................58 5-2-3歸屬函數對控制效果的影響.....................................................59 5-2-4模糊推論規則表(Fuzzy Rule Table)...........................................60 5-3自調機制式之即時增益更新因子(Scaling factor)............................62 第六章 實驗結果與討論..................................................................64 6-1動圈式伺服閥靜態實驗...............................................................64 6-1-1動圈式伺服閥流量特性............................................................64 6-1-2動圈式伺服閥壓力流量曲線......................................................65 6-2動圈式伺服閥動態實驗...............................................................65 6-2-1動圈式伺服閥閥軸之非線性PID定位控制....................................65 6-2-2動圈式伺服閥閥軸之自調式模糊定位控制...................................69 6-3取樣時間討論.............................................................................71 第七章 結論與未來建議....................................................................73 參考文獻........................................................................................76

    參考文獻
    [1] W. Shuai, J. Zongxia, Y. Liang, Z. Rui, Y. Juntao, and C. Chin-Yin, “Development of a Direct-Drive Servo Valve With High-Frequency Voice Coil Motor and Advanced Digital Controller,” Mechatronics, IEEE/ASME Transactions on, vol. 19, pp. 932-942, 2014.

    [2] http://www.moog.com/literature/ICD/Valves-Introduction.pdf

    [3] 賴建名, “壓電致動器驅動油壓控制閥設計與控制之研究” ,國立成功大學機械工程研究所碩士論文, 2014。

    [4] 周晏聲, “切換式電磁線圈與動圈式換能器之無感測器定位控制” ,國立雲林科技大學機械工程研究所碩士論文, 2003。

    [5] http://www.consultg2.com/course/chapter11/chapter.html.

    [6] Herbert E. Merritt, “Hydraulic Control Systems,” New York: John Wiley,1967.

    [7] Charles L. Phillips, “Digital Control System Analysis and Design,” Prentice-Hall Inc,1995.

    [8] G. J. Ho, K. R. Pai, and M. C. Shih, “A Study of Bi-axial Pneumatic Manipulator Position Control,” Proceeding of the 19th National Conference on Mechanical Engineering, CSME, Taiwan, pp. 427-434, 2002.

    [9] M. H. Tsai, T. Y. Hsu, K. R. Pai, and M. C. Shih, “Precision Position Control of Pneumatic Servo Table Embedded with Aerostatic Bearing, ” Journal of System Design and Dynamics, vol. 2, pp. 940-949, 2008.

    [10] H. I. Chen and M .C. Shih, “Visual Control of an Automatic Manipulation System by Microscope and Pneumatic Actuator, ” Automation Science and Engineering, IEEE Transactions on, vol. 10, pp. 215-218, 2013.

    [11] M. C. Shih, T. Y. Chen, “Design and Control of Pneumatic Minimal Invasive Surgery Manipulator”, The 12th International Conference on Fluid Control, Measurements, and Visualization, 2013.

    [12] J. Manham and D.C.Sweeney, “An Investigation of Hydraulic Lock”, Institution of Mechanical Engineers, London, 1955.

    [13] T. S. Low and W. Guo, “Modeling of a three-layer piezoelectric bimorph beam with hysteresis”, Journal of microelectromechanical system, Vol. 4, pp. 230-237, 1995.

    [14] B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo, and S. Weerasooriya ,“An almost disturbance decoupling robust controller design for a piezoceramic bimorph actuator with hysteresis,” IEEE Transaction on Control Systems Technology, Vol. 7, pp. 160-173, 1999.

    [15] G. Hong, W. Dayu, and X. Jinquan, “Research on a High-Frequency Response Direct Drive Valve System Based on Voice Coil Motor, ” Power Electronics, IEEE Transactions on, vol. 28, pp. 2483-2492, 2013.

    [16] L. Nascutiu, “Voice Coil Actuator for Hydraulic Servo Valves with High Transient Performances, ” in Automation, Quality and Testing, Robotics, 2006 IEEE International Conference on, 2006, pp. 185-190.

    [17] D633 and D634 series direct drive servo-proportional control valves with integrated 24V electronics, Moog Inc., East Aurora, NY, USA [Online].
    Available: www.moog.com

    [18] M. B. Ninnard, J.-M. Gery, and A. J. Hazelton, “High efficiency voice coil motor,” U.S. Patent 7 368 838, 2008.

    [19] K. Ohnishi, M. Shibata, and T. Murakami, “Motion control for advanced
    mechatronics,” IEEE/ASME Trans.Mechatronics, vol. 1, no. 1, pp. 56–67,
    Mar. 1996.

    [20] S. Bennett, “Nicholas Minorsky and the automatic steering of ships”,
    IEEE Transactions on, vol. 4, 1984.
    [21] http://www.mstarlabs.com/control/znrule.html

    [22]TAO台灣學智慧藏 化工 第55卷 第二期(2008) 47頁

    [23] 陳祉翔, “油壓伺服閥以音圈線性馬達驅動之設計與控制”,國立成功大學機械工程研究所碩士論文, 2015。

    下載圖示 校內:立即公開
    校外:2020-07-05公開
    QR CODE