| 研究生: |
吳鎧任 Wu, Kai-Jen |
|---|---|
| 論文名稱: |
使用VBO製程製作折角複材零件之研究 Study on Fabrication of Angle Composite Part by Vacuum Bag Only Process with Interleaved Layup |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 複合材料 、VBO製程 、折角零件 、角落厚度偏移 |
| 外文關鍵詞: | composite, VBO processing, angle part, corner thickness deviation |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用碳纖維預浸布與碳纖維布交互堆疊,在複雜形狀之模具上製作出部分浸潤式之折角零件。研究將分成四個部分,第一部分使用兩種不同的纖維形式製作折角零件(Angle part),分別為單向纖維(Unidirectional fabric)及編織纖維(Woven fabric)。在同樣的飽和指數下,採用三種不同厚度的堆疊方式,搭配兩種模具角度(30度及60度)和公母模兩種型態,製作出一系列之折角零件。第二部分為量化折角零件之品質,採用變異係數(Coefficient of Variation, CoV)分析其厚度均勻性;角落厚度偏移(Corner Thickness Deviation, CTD)能反映出不同製程參數下折角零件的最大偏差量;角度偏移(Angle Deviation, AD)能表現出折角零件在成形後之回彈量。結果表明,隨著零件厚度的增加,CoV、CTD和AD均呈線性下降趨勢。此外,與凹模相比,凸模製造之零件具有更高的尺寸穩定性和厚度均勻性。第三部分為量化折角零件內部的孔隙缺陷,提出一種評分機制來分析其內部品質。結果顯示,評分分數隨著零件厚度的增加而增加,且凸模的分數高於凹模。最後,為充分了解零件在拐角區域的厚度變化,提出半經驗模型來預測不同模具幾何形狀和堆疊厚度下的CTD。 在本研究中,半經驗模型對凹凸模之折角零件的預測誤差分別為17.6%和16.1%。本文詳細討論了不同模具參數及製程條件對折角零件品質之影響,提供複合材料在複雜曲面之零件製造及模具設計更全面性的發展。
This study used the vacuum bag-only (VBO) process to fabricate angle composite parts on a complex-shape mold with an interleaved layup method. The quality of corner parts is investigated by statistical methods, which are divided into two parts: geometric characteristics and microstructures. For the geometric characteristics of angle part, the coefficient of variation (CoV) was used to quantify the thickness uniformity of angle part, the corner thickness deviation (CTD) and angle deviation (AD) were used quantify the quality of the angle part. The results indicated that the CoV, CTD, and AD were both linearly decreased with the increase of the part thickness. Besides, the part fabricated by the convex mold presented higher dimension stability and uniformity as compared to that by the concave mold. In addition, we illustrated the effect of caul plate applied at the corner regions, and the results showed that the lead caul plate could effectively improve the thickness change in the corner area in both the concave and convex molds, and both caul plate of lead and Si-rubber could significantly reduce the AD. For the microstructures, a visualized diagram of fiber volume content (V_f) is presented to understand the V_f changes under various process conditions. Furthermore, to quantify the pore defect of internal laminate, we propose a scoring mechanism to analyze the quality of angle part. It turns out that the scores increase with the increased of the part thickness, and the convex mold presented higher score than concave mold. In order to fully understand the thickness variation of the part at the corner region, a semi-empirical model was proposed to forecast the CTD in different part geometry and stacking thickness. In this study, the prediction errors of the semi-empirical model for the parts by the concave and convex molds are 17.6% and 16.1%, respectively.
[1] Centea T, Grunenfelder LK, Nutt SR. A review of out-of-autoclave prepregs–Material properties, process phenomena, and manufacturing considerations. Composites Part A: Applied Science and Manufacturing. 2015;70:132-54.
[2] Schechter SG, Centea T, Nutt SR. Polymer film dewetting for fabrication of out-of-autoclave prepreg with high through-thickness permeability. Composites Part A: Applied Science and Manufacturing. 2018;114:86-96.
[3] Tong R. Cost Analysis on L-shape Composite Componenet Manufacturing: Concordia University; 2012.
[4] Hassan MH, Othman AR, Kamaruddin S. A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures. The International Journal of Advanced Manufacturing Technology. 2017;91(9):4081-94.
[5] Hubert P, Poursartip A. Aspects of the compaction of composite angle laminates: an experimental investigation. Journal of Composite Materials. 2001;35(1):2-26.
[6] Yang Y-H, Young W-B. Carbon/Epoxy Composites Fabricated by Vacuum Consolidation of the Interleaved Layup of Prepregs and Dry Fibers. Fibers and Polymers. 2021;22(2):460-8.
[7] Thorfinnson B, Biermann T. Production of void free composite parts without debulking. 31st International SAMPE symposium1986. p. 480-90.
[8] Thorfinnson B, Biermann T. Degree of Impregnation of Prepregs--Effects on Porosity. Advanced Materials Technology'87. 1987:1500-9.
[9] Repecka L, Boyd J. Vacuum-bag-only-curable prepregs that produce void-free parts. 47 th International SAMPE Symposium and Exhibition 20022002. p. 1862-74.
[10] Grunenfelder L, Dills A, Centea T, Nutt S. Effect of prepreg format on defect control in out-of-autoclave processing. Composites Part A: Applied Science and Manufacturing. 2017;93:88-99.
[11] Schechter SG, Centea T, Nutt S. Effects of resin distribution patterns on through-thickness air removal in vacuum-bag-only prepregs. Composites Part A: Applied Science and Manufacturing. 2020;130:105723.
[12] Hughes SM, Hubert P. Out-of-autoclave prepreg processing: effect of integrated geometric features on part quality. SAMPE Tech. 2013.
[13] Netzel C, Mordasini A, Schubert J, Allen T, Battley M, Hickey C, et al. An experimental study of defect evolution in corners by autoclave processing of prepreg material. Composites Part A: Applied Science and Manufacturing. 2021;144:106348.
[14] Kourkoutsaki T, Comas-Cardona S, Binetruy C, Upadhyay R, Hinterhoelzl R. The impact of air evacuation on the impregnation time of Out-of-Autoclave prepregs. Composites Part A: Applied Science and Manufacturing. 2015;79:30-42.
[15] Alshahrani H, Hojjati M. Optimum processing parameters for hot drape forming of out-of-autoclave prepreg over complex shape using a double diaphragm technique. Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark2015.
[16] Centea T, Hubert P. Out-of-autoclave prepreg consolidation under deficient pressure conditions. Journal of Composite Materials. 2014;48(16):2033-45.
[17] Bender DB, Centea T, Nutt S. Fast cure of stable semi-pregs via VBO cure. Advanced Manufacturing: Polymer & Composites Science. 2020;6(4):245-55.
[18] Hassan M, Othman A. Contribution of processing parameters on void content in the vacuum bagging configurations of L-shaped composite laminates. The International Journal of Advanced Manufacturing Technology. 2017;93(1):1333-45.
[19] Hyun D-K, Kim D, Hwan Shin J, Lee B-E, Shin D-H, Hoon Kim J. Cure cycle modification for efficient vacuum bag only prepreg process. Journal of Composite Materials. 2021;55(8):1039-51.
[20] Liu D-C, Hubert P. Bulk factor characterization of heated debulked autoclave and out-of-autoclave carbon fibre prepregs. Composites Part B: Engineering. 2021;219:108940.
[21] Ma Y, Centea T, Nutt SR. Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG‐only prepregs. Polymer composites. 2017;38(9):2016-25.
[22] Wang Y, Li Y, Wu D. Progress on cure monitoring for Liquid Composite Molding. Aeronautical Manufacturing Technology. 2017;19:50-9.
[23] Harshe R. A review on advanced out-of-autoclave composites processing. Journal of the Indian Institute of Science. 2015;95(3):207-20.
[24] Villareal H, Unger S, Lee FW. Advancement of Out Of Autclave (OOA) Technology at Tencate Advanced Composites, USA. Proc SAMPE. 2012.
[25] 楊宇暉. 無壓力釜預浸布/纖維複合疊層複材製程研究. 成功大學航空太空工程學系學位論文2019. p. 1-84.
[26] Chang Yu-Yao YW-B. Study on Characteristics of Out-of-Autoclave Processed Composites by Prepreg/Fiber Interleaved Layup. National Chung Kung University,Taiwan: National Chung Kung University,Taiwan; 2021.
[27] Baran I, Cinar K, Ersoy N, Akkerman R, Hattel JH. A review on the mechanical modeling of composite manufacturing processes. Archives of computational methods in engineering. 2017;24(2):365-95.
[28] Brillant M, Hubert P. Modelling and characterization of thickness variations in L-shape out-of-autoclave laminates. 18th International Conference on Composites Materials, Jeju, South Korea2011.
[29] Ma Y, Centea T, Nilakantan G, Nutt S. Vacuum Bag Only Processing of Complex Shapes: Effect of Corner Angle, Material Properties and Processing Conditions. American Society for Composites 29th Technical Conference2014.
[30] Li Y, Li M, Gu Y, Zhang Z. Numerical and experimental study on the effect of lay-up type and structural elements on thickness uniformity of L-shaped laminates. Applied Composite Materials. 2009;16(2):101-15.
[31] Fernlund G, Griffith J, Courdji R, Poursartip A. Experimental and numerical study of the effect of caul-sheets on corner thinning of composite laminates. Composites Part A: Applied Science and Manufacturing. 2002;33(3):411-26.
[32] Kim G-H, Choi J-H, Kweon J-H. Manufacture and performance evaluation of the composite hat-stiffened panel. Composite structures. 2010;92(9):2276-84.
[33] Lan M, Cartié D, Davies P, Baley C. Microstructure and tensile properties of carbon–epoxy laminates produced by automated fibre placement: Influence of a caul plate on the effects of gap and overlap embedded defects. Composites Part A: Applied Science and Manufacturing. 2015;78:124-34.
[34] Akay M. Effects of prepreg ageing and post-cure hygrothermal conditioning on the mechanical behaviour of carbon-fibre/epoxy laminates. Composites science and technology. 1990;38(4):359-70.
[35] Centea T, Hughes S, Payette S, Kratz J, Hubert P. Scaling challenges encountered with out-of-autoclave prepregs. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA2012. p. 1568.
[36] Grunenfelder L, Centea T, Hubert P, Nutt S. Effect of room-temperature out-time on tow impregnation in an out-of-autoclave prepreg. Composites Part A: Applied Science and Manufacturing. 2013;45:119-26.
[37] Hassan MH. A mini review on manufacturing defects and performance assessments of complex shape prepreg-based composites. The International Journal of Advanced Manufacturing Technology. 2021;115(11-12):3393-408.
[38] Hubert P, Centea T, Grunefelder L, Nutt S, Kratz J, Levy A. Out-of-Autoclave Prepreg Processing. Comprehensive Composite Materials II: Elsevier; 2018. p. 63.
[39] Hörberg E, Nyman T, Åkermo M, Hallström S. Thickness effect on spring-in of prepreg composite L-profiles–An experimental study. Composite Structures. 2019;209:499-507.
[40] Levy A, Hubert P. Vacuum-bagged composite laminate forming processes: Predicting thickness deviation in complex shapes. Composites Part A: Applied Science and Manufacturing. 2019;126:105568.
[41] Larberg YR, Åkermo M. On the interply friction of different generations of carbon/epoxy prepreg systems. Composites Part A: Applied Science and Manufacturing. 2011;42(9):1067-74.