| 研究生: |
何奈卡 Heru, Naomi Oktarina |
|---|---|
| 論文名稱: |
以大型藻為料源進行乳酸之醱酵生產 Fermentative Lactic Acid Production from Macroalgae Feedstock using Lactobacillus sp. and Weissella sp. |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 乳酸桿菌 、乳酸醱酵 、可再⽣料源 、聚⼄烯醇 、⽯莼 |
| 外文關鍵詞: | L.plantarum 23, lactic acid fermentation, renewable feedstock, polyvinyl alcohol, macroalgae |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳酸是⼀種天然有機酸,是⼀種有價值的⼯業化學品,最常⽤於食品和製藥⾏業。乳酸還⽤於⽣產⽣物可降解塑料聚乳酸,這是⼀種有前途的⽣物相容性和⽣態友好型替代品,可替代化⽯燃料衍⽣的塑料。可再⽣原料是作為乳酸⽣產底物的潛在替代品,因為乳酸的當前⼯業⽣產成本受到原材料/醱酵底物⾼成本的極⼤影響。使⽤可再⽣原料的優點包括廉價的獲取和⾼碳⽔化合物含量。⼤型藻類或海藻是可醱酵碳⽔化合物的豐富⽽廉價的來源,可通過醱酵將其轉化為乳酸。在這項研究中,各種乳酸菌如乳酸桿菌屬(Lactobacillus sp.)和魏斯⽒菌屬(Weissella sp.)被⽤於乳酸的醱酵⽣產。為了獲得⾼的乳酸⽣產率和產量,將乳酸菌固定在聚⼄烯醇(PVA)中。本研究探討了三種⼤型藻類,即綠藻(Ulva sp.)、紅藻(Gracillaria sp.)和褐藻(Sargassum cristaefolium),以評估它們作為乳酸醱酵原料的適⽤性。我們之前的研究(Atika.2018)報告了最佳發酵條件:pH 5.5,溫度30度5,PVA顆粒負載量為12.5%,細胞負載量濃度為5.25 g cell/L,還原糖濃度為40 g/L。相應的⼤型藻類使⽤熱酸⽔解⽅法進⾏了預處理。來⾃預處理的⽔解產物⽤作乳酸醱酵的碳源。與懸浮細胞醱酵相比,使⽤固定有PVA的細胞進⾏醱酵可獲得更⾼的⽣產率。使⽤綠⾊⼤型藻類(Ulva sp.)進⾏的分批乳酸醱酵,鼠李糖乳桿菌(L. rhamnosus)的最⼤乳酸產量為5.22±0.34 g/L/h,最⼤乳酸濃度為31.30±0.58 g/L。另⼀⽅⾯,使⽤L. rhamnosus 24的紅⾊⼤型藻類(Gracillaria sp.)的最⼤乳酸濃度為32.11±0.21 g/L,最⼤⽣產率為6.34±0.19 g/L/h。使⽤L. plantarum 23的⼤型藻(Sargassum cristaefolium),產⽣的最⼤乳酸濃度和⽣產⼒分別為30.91±0.45 g/L和7.091±.64 g/L/h。
Lactic acid (LA), a natural organic acid and a valuable industrial chemical, is most commonly used in food and pharmaceutical industry. LA is also used for the production of biodegradable plastics (PLA), which is a promising biocompatible and eco-friendly alternative for fossil fuel derived plastics. Renewable feedstock is a potential alternative as a substrate for lactic acid production, because current industrial production costs of LA is highly affected by the high cost of raw materials/fermentation substrates. The advantages of using renewable feedstock include inexpensive acquirement and high carbohydrate content. Macroalgae or seaweed are abundant and inexpensive source of fermentable carbohydrates, which could be converted to lactic acid via fermentation In this study, various lactic acid bacteria (LAB) such as Lactobacillus sp. and Weissella sp. were used for fermentative LA production. To obtain high LA productivity and yield, LAB were immobilized in polyvinyl alcohol (PVA). Three varieties of macroalgae namely, green algae (Ulva sp.), red algae (Gracillaria sp.), and brown algae (Sargassum cristaefolium) were investigated to evaluate their suitability as lactic acid fermentation feedstock. The optimal fermentation conditions were reported in our previous study (Atika.2018): pH 5.5, temperature 30°C, PVA particle loading 12.5%, cell loading concentration 5.25gcell/L, and reducing sugar concentration 40 g/L. The corresponding macroalgae were pretreated using thermal-acid hydrolysis method. The hydrolysate from the pretreatment were used as the carbon source for LA fermentation.
Fermentation using PVA-immobilized cell obtained better productivity compared to suspended cell fermentation. Batch LA fermentation using green macroalgae (Ulva sp.), attained a maximum lactic acid productivity of 5.22±0.34 g/L/h with L. rhamnosus and the maximum lactic acid concentration was 31.30±0.58 g/L. On the other hand, maximum lactic acid concentration using red macroalgae (Gracillaria sp.) using L. rhamnosus 24 was 32.11 ±0.21 g/L and maximum productivity was 6.34±0.19 g/L/h. The highest lactic acid productivity was achieved with brown macroalgae (Sargassum cristaefolium) using L. plantarum 23, which produced maximum lactic acid concentration and productivity of 30.91±0.45 g/L and 7.09±0.64 g/L/h, respectively.
REFERENCES
Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011a). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286-301.
Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., Hanada, K., Shibata, K., & Sonomoto,K. (2011b). Efficient Homofermentative L-(+)-Lactic Acid Production from Xylose by a Novel Lactic Acid Bacterium, Enterococcus mundtii QU 25 Application Environ. Microbiol, 77(5), 1892-1895.
Abdel-Rahman, M. A., YukihiroTashiro, & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877-902.
Adams, J. M., Gallagher, J. A., & Donnison, I. S. (2008). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied PHycology, 21(5), 569. doi:10.1007/s10811-008-9384-7
Burton, T., Lyons, H., Lerat, Y., Stanley, M., & Rasmussen, M. B. (2009). A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland.
Büyükkileci, A. O., & Harsa, S. (2004). Batch production of L(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology & Biotechnology, 79(9), 1036-1040.
Calabia, B. P., Tokiwa, Y., & Aiba, S. (2011). Fermentative production of l-(+)-lactic acid by an alkalipHilic marine microorganism. Biotechnology Letters, 33(7), 1429-1433.
Cian, Raul E., Drago, Silvina R., Augustin, Olga M. 2015. Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota. Marine Drugs, 13, 5358-5383
Chang, D. E., Jung, H. C., Rhee, J. S., & Pan, J. G. (1999). Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol., 65(4), 1384-1389.
Datta, R., Tsai, S.-P., Bonsignore, P., Moon, S.-H., & Frank, J. R. (1995).
Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, 16(2-3), 221-231.
Ding, S., & Tan, T. (2006). l-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry, 41(6), 1451-1454.
Hirayama, S., & Ueda, R. (2004). Production of optically pure D-lactic acid by Nannochlorum sp. 26A4. Appl Biochem Biotechnol., 119(1), 71-77.
Hwang, H. J., Kim, S. M., Chang, J. H., & Lee, S. B. (2012). Lactic acid production from seaweed hydrolysate of EnteromorpHa prolifera (ChloropHyta). Journal of Applied PHycology, 24(4), 935-940.
Hwang, H. J., Lee, S. Y., Kim, S. M., & Lee, S. B. (2011). Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnology and Bioprocess Engineering, 16(6), 1231-1239.
John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186–193.
Kim, S. B., Yum, D. M., & Park, S. C. (2000). Step-change variation of acid concentration in a percolation reactor for hydrolysis of hardwood hemicellulose. Bioresource Technology, 72(3), 289-294.
Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729.
Lee, J. Y., Li, P., Lee, J., Ryu, H. J., & Oh, K. K. (2013). Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresource Technology, 127(Supplement C), 119-125.
Lim, H. C., & Shin, H. S. (2013). Fed-Batch Cultures : Principles and Applications of Semi-Batch Bioreactors (7th ed.). New York: CAMBRIDGE UNIVERSITY PRESS.
Lin, C. Y., & Lay, C. H. (2004). Effects of carbonate and pHospHate concentrations on hydrogen production using anaerobic sewage sludge microflora.
International Journal of Hydrogen Energy, 19, 275-281.
Manivanann, K., Thirumaran, G., Devi, G.K. 2009. Proximate Composition of Different Group of Seaweeds from Vedalai Coastal Waters (Gulf of Mannar): Southeast Coast of India. Middle-East Journal of Scientific Research 4 (2):72-77.
Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules, 23, 2201.
Nakano, S., Ugwu, C. U., & Yutaka Tokiwa. (2012). Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresource Technology, 104, 791-794.
Narayanan, N., Roychoudhury, P. K., & Srivastava, A. (2004). L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 7(2), 167-178.
Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Kim, J.-C. (2012). Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresource Technology, 110, 552-559.
Ohara, H., Hiyama, K., & Yoshida, T. (1992). Kinetics of growth and lactic acid production in continuous and batch culture. Applied Microbiology and Biotechnology, 37(5), 544-548.
Okano, K., Yoshida, S., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2009).
Homo-D-Lactic Acid Fermentation from Arabinose by Redirection of the PHospHoketolase Pathway to the Pentose PHospHate Pathway in L-Lactate Dehydrogenase Gene-Deficient Lactobacillus plantarum. Applied and Environmental Microbiology, 75(15), 5175–5178.
Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18(4), 303-319.
Qin, J., Wang, X., Zheng, Z., Ma, C., Tang, H., & Xu, P. (2010). Production of l-lactic acid by a thermopHilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresource Technology, 101(19), 7570-7576.
Radulovich, R., Neori, A., Valderamma, D., Reddy, C.R.K. 2015. Seaweed Sustainability: Food and Non-Food Applications. Seaweed Sustainability, 10, 27-30
Ross, A. B., Jones, J. M., Kubacki, M. L., & Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99(14), 6494-6504.
Schenk, P. M., Thomas-Hall, S. R., StepHens, E., Marx, U. C., Mussgnug, J. H., Posten, C.,Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research, 1(1), 20-43.
Vick Roy, T. B., Blanch, H. W., & Wilke, C. R. (1983). Microbial hollow fiber bioreactors. Trends in Biotechnology, 1(5), 135-139.
Vijayakumar, J., Aravindan, R., & Viruthagiri, T. (2008). Recent trends in the production, purification and application of lactic acid. Chemical and Biochemical Engineering Quarterly, 22(2), 245.
Yujian, W., Xiaojuan, Y., Hongyu, L., & Wei, T. (2006). Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate.
Polymer Degradation and Stability, 91, 2408-2414.
Zhou, S., Causey, T. B., Hasona, A., Shanmugam, K. T., & Ingram, L. O. (2003).
Production of Optically Pure D-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110. Appl. Environ. Microbiol., 69(1), 399-407.
Zhou, S., Shanmugam, K. T., Yomano, L. P., Grabar, T. B., & Ingram, L. O. (2006).
Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnology Letters, 28(9), 663–670.
Zhu, Y., Eiteman, M. A., DeWitt, K., & Altman, E. (2007). Homolactate Fermentation by Metabolically Engineered Escherichia coli Strains. Appl Environ Microbiol., 73(2), 456-464.