簡易檢索 / 詳目顯示

研究生: 廖孟源
Liao, Meng-Yuan
論文名稱: 二維經驗模態分解於微粒子影像伺服應用
Bidimensional Empirical Mode Decomposition for Visual Manipulation of Micro Particles
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 二維經驗模態分解自動聚焦邊緣偵測微粒子追蹤
外文關鍵詞: bidimensional empirical mode decomposition, autofocus, edge detection, particles tracking
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經驗模態分解(Empirical Mode Decomposition)在一維訊號處理的成功,許多學者將其推廣至二維並研究。本文提出利用二維經驗模態分解(Bidimensional Empirical Mode Decomposition)處理影像,取其高頻分量並計算其影像能量作為一種新的聚焦函數,由本文研究結果比較,可以看出此自動聚焦函數性能(Accuracy, Range, Number of false maximum and Width)皆優於其他自動聚焦函數。將影像經過前處理後再經由二維經驗模態分解,取其高頻分量經過拉普拉斯遮罩,再經過一連串後影像處理進行邊緣偵測,此方法有效的抑制雜訊且有良好的邊緣偵測能力。利用此邊緣偵測方與圓形霍式轉換實現PCSS法為主樣板比對法為輔之微粒子追蹤演算法,實現直徑30~50μm微粒子定位及追蹤,以便未來應用於生物醫學相關之微粒子操縱。

    Empirical mode decomposition has been successfully employed in one-dimensional signal processing. Recently, many researchers have extended this approach to two-dimensional signal processing. In this research, a bidimensional empirical mode decomposition is employed to process an image by taking the value of high frequency component in the image energy as a new focusing function. By comparing the results in this research, we observe that the performance of the autofocus function (Accuracy, Range, Number of false maximum, and Width) is better than others. By preprocessing the image data, doing the bidimensional empirical mode decomposition, and taking the value of the high frequency component after dealing with the Laplace mask, and then through a serial image processing, an edge detection technique is implemented. The research shows that this method has better abilities in suppressing the signal noise and doing the edge detection. Particles tracking algorithm mainly based on PCSS and supplemented by pattern matching is realized by utilizing both edge detection and circular Hough transformation. The present system achieves positioning and tracking particles of diameter from 30 to 50 μm and can be utilized in biomedical engineering in the future.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 V 表目錄 X 圖目錄 XI 符號表 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2.1 聚焦函數 1 1-2.2 經驗模態分解 3 1-2.3 粒子追蹤 5 1-2.4 微操縱相關 8 1-3 研究目標與方法 13 1-4 本文架構 13 第二章 基礎理論 15 2-1 一維經驗模態分解 15 2-1.1 內建模態函數 15 2-1.2 一維經驗模態分解演算法 16 2-1.3 一維經驗模態處理影像 19 2-2 二維經驗模態分解 19 2-2.1 極值點選取 20 2-2.2 建構包絡曲面 20 2-2.3 二維經驗模態分解演算法 24 2-3 本章總結 26 第三章 自動聚焦 27 3-1 自動聚焦方法 27 3-2 自動聚焦系統硬體架構 29 3-3 搜尋策略 31 3-3.1 全域搜尋策略(Scan-All Strategy) 31 3-3.2 二分法搜尋策略(Bisection Strategy) 32 3-3.3 來回搜尋策略(Refocus Strategy) 33 3-4 自動聚焦評價函數 34 3-4.1 聚焦函數特性 34 3-4.2 常用聚焦函數 35 3-4.3 BEMD能量 39 3-4.4 訊雜比(SNR) 40 3-5 聚焦函數性能評量方法 40 3-5.1 準確性(Accuracy) 41 3-5.2 範圍(Range) 41 3-5.3 錯誤極值數(Number of False Maxima) 42 3-5.4 寬度(Width) 42 3-5.5 整體性能評量 43 3-6 聚焦評價函數比較結果與討論 44 3-7 本章總結 52 第四章 邊緣偵測 53 4-1 常用邊緣偵測方法 53 4-1.1 Prewitt邊緣偵測 54 4-1.2 Sobel邊緣偵測 54 4.1.3 Laplacian邊緣偵測 55 4-1.4 Canny邊緣偵測 56 4-2 本文邊緣偵測架構 57 4-3 邊緣偵測結果與討論 61 4-4 微粒子追蹤 65 4-4.1 霍氏轉換 66 4-4.2 圓形霍氏轉換(Circular Hough Transform) 66 4-4.3 極座標系統相似性(PCSS) 69 4-4.4 樣板比對 70 4-4.5 本文微粒子追蹤架構 71 4-5 本章總結 74 第五章 系統與整合與測試 75 5-1 系統整合 75 5-2 硬體整合 75 5-3 人機介面 80 5-4 影像校正 83 5-5 實現自動聚焦 83 5-6 微粒子追蹤 87 5-7 微粒子夾取 93 5-8 本章總結 98 第六章 結論與未來展望 99 6-1 結論 99 6-2 未來展望 100 參考文獻 101 附錄A步進馬達與驅動電路 105 附錄B介面卡技術資料 108 1. MATROX MORPHIS 影像擷取卡 108 2. ADVANTECH PCI-1727U 類比電壓輸出卡 109 3. ADVANTECH PCI-1710HG VER. B 類比電壓輸出卡 110 自述 111

    參考文獻
    [1] F.C. Groen, I.T. Young, G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry, vol. 6, no. 2, pp. 81-91, 1985.
    [2] L. Firestone, K. Coo, K. Culp, N. Talsania, K. Preston, “Comparison of autofocus methods for automated microscopy,” Cytometry vol. 12, pp. 195-206, 1991.
    [3] M. Subbarao, T.S. Choi, A. Nikzad, “Focusing techniques,” J Opt Eng vol. 32, pp. 824-2836, 1993.
    [4] T.E. Yeo, S.H. Ong, S.O. Jayasooriah, R. Sinniah, “Autofocusing for tissue micro-scopy,” Image Vis Comput, vol. 11, pp. 629-639, 1993.
    [5] A. Santos, C. Ortiz De Solorzano, J.J. Vaquero, J. M. Peña, N. Malpica, F.D. Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” Journal of Microscopy, vol. 188, pp. 264-272,1997.
    [6] G. Yang, B.J. Nelson, “Wavelet-based auto-focusing and unsupervised segmentation of microscopic images,” Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2143-2148, 2003.
    [7] G. Yang, Bradley J. Nelson, “Micromanipulation contact transition control by selective focusing and microforce control,” Proc IEEE International Conference on Robotics and Automation, pp. 3200-3206, 2003.
    [8] H. Xie, W.B. Rong, L.N. Sun, “Construction and evaluation of a wavelet-based focus measure for microscopy imaging,” Microscopy Research and Technique, vol. 70, pp. 987-995, 2007.
    [9] Y. Sun, S. Duthaler, B.J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microscopy Research and Technique, vol. 65, pp. 139-149, 2004.
    [10] N.E. Huang, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceeding of the Royal Society London A, pp.903-1005, 1998.
    [11] J.C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition, ” Image Vision Comput, pp. 1019-1026, 2003.
    [12] H. Hariharan, A. Koschan, “Fusion of visible and infrared images using empirical mMode decompostion to improve face eecognition, ”IEEE Intenationa; Conference on Image Processing ICIP2006, pp. 2049-2052, 2006.
    [13] S. Sinclair, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting, ” Hydrology and Earth System Sciences, no. 9, pp. 127-137, 2005.
    [14] D. Looney, D.P. Mandic, “Multiscale image fusion using complex extensions of EMD, ” IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1626-1630, 2009.
    [15] M.H. Yeh, “The complex bidimensional empirical mode decomposition, ”Signal Processing, vol. 92, pp. 523-541, 2011
    [16]蔡劍華, 胡惟文, 王先春, “經驗模態分解和形態學在圖像邊緣檢測中的應用,” 計算機工程與應用, 46(31), pp. 196-198, 2010.
    [17] T. Uemura, F. Yamamoto, F. Ohmi, “A high-speed algorithm of image analysis for real time measurement of two-dimensional velocity distribution,” Flow Visualization, ASME FED, vol. 85, pp. 129–34, 1989.
    [18] K. Nishino, N. Kasagi, M. Hirata, “Three-dimensional particle tracking velocimetry based on automated digital image processing,” J. Fluids Eng, vol. 111, pp. 384-391, 1989.
    [19] X.D. Ruan, W.F. Zhao, “A novel particle tracking algorithm using polar coordinate system similarity,” Acta Mech Sinica vol. 21, pp. 430-435, 2005.
    [20] J. Willneff, “3D particle tracking velocimetry based on image and object space information,” ISPRS Commission V Symposium, 2002.
    [21] H. Hulsen, T. Truper, S. Fatikow “Control system for the automatic handling of biological cells with mobile microrobots”, Proc. American Control Conference (ACC'04), pp.3986-3991, 2004.
    [22] M.C. Carrozza, P. Dario, A. Menciassi and A. Fenu, “Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors,” Proceedings of the IEEE International Conference on Robotics & Automation, vol. 2, pp. 1811-1816, May 1998.
    [23] Li X, Zong G and Bi S, “Development of global vision system for biological automatic micro-manipulation system,” Proceedings of the IEEE International Conference on Robotics and Automation, vol.1, pp. 127-132, May 2001.
    [24] A. Suzuki, T. Arai, Y. Mae, K. Inoue and T. Tanikawa, “Automated micro handling,” Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, vol.1, pp. 348-353, July 2003.
    [25] F. Beyeler, “Design of a micro-Gripper and an ultrasonic manipulator for handling micron sized objects, ”International Conference on Intelligent Robots and Systems, IEEE, pp.772-777, 2006.
    [26] K. Keekyoung, “MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis Force feedback,” International Conference on Robotics and Automation, IEEE, pp. 3100-3105, 2008.
    [27] Y. Sun, “Autofocusing in computer microscopy: Selecting the optimal focus Algorithm,” Microsccopy Research and Technique, vol. 65, pp.139-149, 2004
    [28] J. Canny, “A computational approach to edge detection, ” Transactions on Pattern Analysis and Machine Intelligence, IEEE, vol. PAMI-8, no. 6, pp. 679-698, 1986.
    [29] 簡佑丞, “ 影像伺服液體環境之微粒子” 國立成功大學機械工程學系碩士論文, June, 2011.
    [30] P.V.C. Hough, “Method and means for recognizing complex patterns,” U. S. Patent no. 3069654, 1962.
    [31] P.E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” Comm. ACM, vol. 15, pp. 11-15, 1972.
    [32] X.D. Ruan, W.F. Zhao, “A novel particle tracking algorithm using polar coordinate system similarity,” Acta Mech. Sinica, vol. 21, pp. 430-435, 2005.
    [33] 孫華偉,“影像伺服自動操縱液體環境中之微粒子”,國立成功大學機械工程學系碩士論文, June, 2010.
    [34] 吳政達, “ 虛擬場景輔助進給與操縱遠端液體環境中之微粒子” 國立成功大學機械工程學系碩士論文, June, 2009.

    無法下載圖示 校內:2017-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE