| 研究生: |
廖孟源 Liao, Meng-Yuan |
|---|---|
| 論文名稱: |
二維經驗模態分解於微粒子影像伺服應用 Bidimensional Empirical Mode Decomposition for Visual Manipulation of Micro Particles |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 二維經驗模態分解 、自動聚焦 、邊緣偵測 、微粒子追蹤 |
| 外文關鍵詞: | bidimensional empirical mode decomposition, autofocus, edge detection, particles tracking |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經驗模態分解(Empirical Mode Decomposition)在一維訊號處理的成功,許多學者將其推廣至二維並研究。本文提出利用二維經驗模態分解(Bidimensional Empirical Mode Decomposition)處理影像,取其高頻分量並計算其影像能量作為一種新的聚焦函數,由本文研究結果比較,可以看出此自動聚焦函數性能(Accuracy, Range, Number of false maximum and Width)皆優於其他自動聚焦函數。將影像經過前處理後再經由二維經驗模態分解,取其高頻分量經過拉普拉斯遮罩,再經過一連串後影像處理進行邊緣偵測,此方法有效的抑制雜訊且有良好的邊緣偵測能力。利用此邊緣偵測方與圓形霍式轉換實現PCSS法為主樣板比對法為輔之微粒子追蹤演算法,實現直徑30~50μm微粒子定位及追蹤,以便未來應用於生物醫學相關之微粒子操縱。
Empirical mode decomposition has been successfully employed in one-dimensional signal processing. Recently, many researchers have extended this approach to two-dimensional signal processing. In this research, a bidimensional empirical mode decomposition is employed to process an image by taking the value of high frequency component in the image energy as a new focusing function. By comparing the results in this research, we observe that the performance of the autofocus function (Accuracy, Range, Number of false maximum, and Width) is better than others. By preprocessing the image data, doing the bidimensional empirical mode decomposition, and taking the value of the high frequency component after dealing with the Laplace mask, and then through a serial image processing, an edge detection technique is implemented. The research shows that this method has better abilities in suppressing the signal noise and doing the edge detection. Particles tracking algorithm mainly based on PCSS and supplemented by pattern matching is realized by utilizing both edge detection and circular Hough transformation. The present system achieves positioning and tracking particles of diameter from 30 to 50 μm and can be utilized in biomedical engineering in the future.
參考文獻
[1] F.C. Groen, I.T. Young, G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry, vol. 6, no. 2, pp. 81-91, 1985.
[2] L. Firestone, K. Coo, K. Culp, N. Talsania, K. Preston, “Comparison of autofocus methods for automated microscopy,” Cytometry vol. 12, pp. 195-206, 1991.
[3] M. Subbarao, T.S. Choi, A. Nikzad, “Focusing techniques,” J Opt Eng vol. 32, pp. 824-2836, 1993.
[4] T.E. Yeo, S.H. Ong, S.O. Jayasooriah, R. Sinniah, “Autofocusing for tissue micro-scopy,” Image Vis Comput, vol. 11, pp. 629-639, 1993.
[5] A. Santos, C. Ortiz De Solorzano, J.J. Vaquero, J. M. Peña, N. Malpica, F.D. Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” Journal of Microscopy, vol. 188, pp. 264-272,1997.
[6] G. Yang, B.J. Nelson, “Wavelet-based auto-focusing and unsupervised segmentation of microscopic images,” Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2143-2148, 2003.
[7] G. Yang, Bradley J. Nelson, “Micromanipulation contact transition control by selective focusing and microforce control,” Proc IEEE International Conference on Robotics and Automation, pp. 3200-3206, 2003.
[8] H. Xie, W.B. Rong, L.N. Sun, “Construction and evaluation of a wavelet-based focus measure for microscopy imaging,” Microscopy Research and Technique, vol. 70, pp. 987-995, 2007.
[9] Y. Sun, S. Duthaler, B.J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microscopy Research and Technique, vol. 65, pp. 139-149, 2004.
[10] N.E. Huang, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceeding of the Royal Society London A, pp.903-1005, 1998.
[11] J.C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition, ” Image Vision Comput, pp. 1019-1026, 2003.
[12] H. Hariharan, A. Koschan, “Fusion of visible and infrared images using empirical mMode decompostion to improve face eecognition, ”IEEE Intenationa; Conference on Image Processing ICIP2006, pp. 2049-2052, 2006.
[13] S. Sinclair, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting, ” Hydrology and Earth System Sciences, no. 9, pp. 127-137, 2005.
[14] D. Looney, D.P. Mandic, “Multiscale image fusion using complex extensions of EMD, ” IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1626-1630, 2009.
[15] M.H. Yeh, “The complex bidimensional empirical mode decomposition, ”Signal Processing, vol. 92, pp. 523-541, 2011
[16]蔡劍華, 胡惟文, 王先春, “經驗模態分解和形態學在圖像邊緣檢測中的應用,” 計算機工程與應用, 46(31), pp. 196-198, 2010.
[17] T. Uemura, F. Yamamoto, F. Ohmi, “A high-speed algorithm of image analysis for real time measurement of two-dimensional velocity distribution,” Flow Visualization, ASME FED, vol. 85, pp. 129–34, 1989.
[18] K. Nishino, N. Kasagi, M. Hirata, “Three-dimensional particle tracking velocimetry based on automated digital image processing,” J. Fluids Eng, vol. 111, pp. 384-391, 1989.
[19] X.D. Ruan, W.F. Zhao, “A novel particle tracking algorithm using polar coordinate system similarity,” Acta Mech Sinica vol. 21, pp. 430-435, 2005.
[20] J. Willneff, “3D particle tracking velocimetry based on image and object space information,” ISPRS Commission V Symposium, 2002.
[21] H. Hulsen, T. Truper, S. Fatikow “Control system for the automatic handling of biological cells with mobile microrobots”, Proc. American Control Conference (ACC'04), pp.3986-3991, 2004.
[22] M.C. Carrozza, P. Dario, A. Menciassi and A. Fenu, “Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors,” Proceedings of the IEEE International Conference on Robotics & Automation, vol. 2, pp. 1811-1816, May 1998.
[23] Li X, Zong G and Bi S, “Development of global vision system for biological automatic micro-manipulation system,” Proceedings of the IEEE International Conference on Robotics and Automation, vol.1, pp. 127-132, May 2001.
[24] A. Suzuki, T. Arai, Y. Mae, K. Inoue and T. Tanikawa, “Automated micro handling,” Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, vol.1, pp. 348-353, July 2003.
[25] F. Beyeler, “Design of a micro-Gripper and an ultrasonic manipulator for handling micron sized objects, ”International Conference on Intelligent Robots and Systems, IEEE, pp.772-777, 2006.
[26] K. Keekyoung, “MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis Force feedback,” International Conference on Robotics and Automation, IEEE, pp. 3100-3105, 2008.
[27] Y. Sun, “Autofocusing in computer microscopy: Selecting the optimal focus Algorithm,” Microsccopy Research and Technique, vol. 65, pp.139-149, 2004
[28] J. Canny, “A computational approach to edge detection, ” Transactions on Pattern Analysis and Machine Intelligence, IEEE, vol. PAMI-8, no. 6, pp. 679-698, 1986.
[29] 簡佑丞, “ 影像伺服液體環境之微粒子” 國立成功大學機械工程學系碩士論文, June, 2011.
[30] P.V.C. Hough, “Method and means for recognizing complex patterns,” U. S. Patent no. 3069654, 1962.
[31] P.E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” Comm. ACM, vol. 15, pp. 11-15, 1972.
[32] X.D. Ruan, W.F. Zhao, “A novel particle tracking algorithm using polar coordinate system similarity,” Acta Mech. Sinica, vol. 21, pp. 430-435, 2005.
[33] 孫華偉,“影像伺服自動操縱液體環境中之微粒子”,國立成功大學機械工程學系碩士論文, June, 2010.
[34] 吳政達, “ 虛擬場景輔助進給與操縱遠端液體環境中之微粒子” 國立成功大學機械工程學系碩士論文, June, 2009.
校內:2017-08-10公開