簡易檢索 / 詳目顯示

研究生: 巫泳葳
Wu, Yong-Wei
論文名稱: 以大尺度渦流法研究測量儀器對圓柱尾流的測量結果影響
Analysis of the influence of measuring instruments on the measurement of cylindrical wake by Large Eddy Simulation
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 大尺度渦流模擬法圓柱尾流交叉陣列熱線探針
外文關鍵詞: large eddy simulation, wake of a circular cylinder, cross type hot wire
相關次數: 點閱:107下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討進行熱線探針測速儀進行的圓柱尾流實驗時,受限於探針必須伸入流場中進行速度量測,侵入式的探針支架有可能會影響圓柱尾流的發展進而影響到實驗結果的精確度。
    使用大尺度渦流法(LES)模擬並比較兩種計算域,分別是傳統上僅包含圓柱之計算域以及同時包含圓柱與侵入式支架之計算域,並使用兩種雷諾數Re = 3856和Re = 9959於近尾流區比較模擬結果之平均速度以及方均根擾動速度,並利用比較結果說明陳威呈(2018)以PIV實驗結果與熱線測速儀實驗結果之差異性。
    計算中次格點模型使用Dynamic Smagorinsky model;使用熱線測速儀在入口處所量測的結果作為入口條件,取代一般無擾動的均值入口;網格的建立依照實驗值推估流場中的泰勒尺度分布,作為建立網格時網格密度分布的設置參考。研究中可以發現同時考量圓柱和侵入式支架的計算域的模擬結果與僅考量圓柱所設置的計算域模擬結果在主流方向平均速度在非常上游處有明顯的速度差異,並且在頻譜圖上可以推測侵入式的支架確實有破壞流場發展的現象。

    This study is aimed detecting the influence of an intrusive anemometer on cylindrical wake flow measurements by comparing the turbulence statistics between two computational domains, a domain with cylinder and a domain with a cylinder and an intrusive hot-wire anemometer (HWA). The numerical results of the domain with only the cylinder and the HWA experimental results are compared to verify the credibility of the numerical method. A numerical simulation is performed with the LES method and a sub-grid model of the dynamic Smagorinsky model (DSM) by imposing the measured boundary conditions, mainly for the near wake region for two cases, Re = 3856 and Re = 9959.
    The strategy for setting the mesh size is dependent on the estimated Tylor micro scale obtained from the experimental results for the purpose of approaching the physical interpretation of the LES method. Based on the estimated Tylor micro scale, different mesh densities were set up in the shear-layer region for mesh identification, and the results for the recirculation bubble length using this method were found to be close to each mesh density in both cases. The numerical results of the domain with the cylinder were found to be in good agreement with the experimental results at x/d = 4 ~ 10.
    The numerical results for the two different domains in terms of the stream-wise mean velocity value were obviously different. At the very near wake region(x/d = 2), the deviation in the value was 13.5% for Re = 3865 and 9.8% for Re = 9959. The deviation in the stream-wise velocity gradually decreased in the downstream region, where the deviation in stream-wise velocity value was 4.7% at x = 6d for Re = 3856.

    摘要 I Extended Abstract II 致謝 X 目錄 XII 表目錄 XIII 符號說明 XVII 第一章 緒論 1 1-1前言 1 1.2文獻回顧 1 1.3研究背景與目標 3 第二章 數學模型 5 2.1 大尺度渦流法之統御方程式 5 2.2次格點模型 6 2.2.1 Smagorinsky Model 6 2.2.2 Dynamic Smagorinsky-Lilly model 7 第三章 數值方法 9 3.1數值方法 9 3.2計算域以及邊界條件設定 9 3.3入口條件設定 10 3.4 網格設置 11 3.5網格獨立性驗證 13 第四章 結果與討論 15 4.1紊流統計量 15 4.2模擬與實驗結果比較 16 4.3侵入式網格之模擬結果 17 4.4結果可靠性 20 4.4.1頻譜分析 20 4.4.2迴流區長度討論 20 第五章 22 5.1結論 22 5.2未來工作與建議 22 第六章 參考資料 24

    Paper:
    [1] Alam, Moriya, Takai, H Sakamoto. “Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number”, Wind Engineering and Industrial Aerodynamics 91(1-2), pp. 139-154 (2003)
    [2] Breuer, “Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects”, Numerical Methods in Fluids 28, pp. 1281-1302(1998)
    [3]Box and MULLER, “A note on the generation of random normal deviates” (1958)
    [4]Franke and Frank,“ Large Eddy Simulation of the flow past a circular cylinder at ReD=3900”, Wind Engineering and Industrial Aerodynamics 90, pp. 1191–1206 (2002)
    [5] Fourier, J. B. J., “Analytical theory of heat”, ‎University of Cambridge (1822)
    [6] Germano, Piomelli, Moin, and Cabot., “A dynamic Subgrid-Scale Eddy Viscosity Model” Physics of Fluids A: Fluid Dynamics 3, pp. 1760 (1991);
    [7]Kim and Menon, “Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows”, 35th Aerospace Sciences Meeting and Exhibit (1997)
    [8]Lilly, “A propose modification of Germano subgrid scale closure method”, Physics of Fluids A: Fluid Dynamics 4, pp. 633 (1992)
    [9]Ong and Walaace, “The velocity field of the turbulent very near wake of a circular cylinder”, Experiments in Fluids 20, pp. 441-453 (1996)
    [10] Parnaudeau, Carlier, Heitz, and Lamballais. “Experimental and Numerical Studies of the Flow over a Circular Cylinder at Reynolds Number 3900”, Physics of Fluids 20, 085101 (2008)
    [11]Pope, “Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows”, New Journal of Physics 6, pp. 35 (2004)
    [12] MA, KARAMANOS and KARNIADAKIS. “Dynamics and Low-Dimensionality of a Turbulent Near Wake”, J. Fluid Mech. 410, pp. 29–65(2000)
    [13] Prsic, Ongb, Pettersena and Myrhauga. “Large Eddy Simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime”, Ocean Engineering 77, pp. 61–73 (2014)
    [14]Smagorinsky, “General Circulation Experiments with the Primitive Equations I, The Basic Experiment”, Washington, D.C 91, num. 3 (1963)
    [15]石昌隆, “Investigation of Velocity Measurement Technology in Turbulent Wake Over the Circular Cylinder.” (2015)
    [16]陳威呈, “Development of Two-phase Velocity Measurement Using PIV Technique” (2018)
    [17]姚立謙, “Analysis of Flow over a Cylinder by Large Eddy Simulation” (2016)
    Books:
    [18]ANSYS Inc., ANSYS FLUENT 13.0.0 User’s Guide. (2010)
    [19]Sagaut, “Large Eddy Simulation for incompressible flows: An Introduction” (2002)
    [20]Tennekes and Lumley, “A first course in Turbulence” (1970)

    下載圖示 校內:2020-12-01公開
    校外:2020-12-01公開
    QR CODE