簡易檢索 / 詳目顯示

研究生: 王柔婷
Wang, Rou-Ting
論文名稱: 利用模糊類神經網路模型分析前列腺癌microarray資料挑選相關之致癌基因
Fuzzy neural network applied to selection of potential prostate cancer biomarkers from microarray data
指導教授: 鄭智元
Jeng, Jr-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 113
中文關鍵詞: 前列腺癌模糊類神經
外文關鍵詞: prostate cancer, microarray, FNN
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   前列腺癌是歐美國家最常見的男性癌症之ㄧ,其基因上的醫學研究相當多。本研究即使用模糊類神經網路架構模擬前列腺癌microarray資料,試圖將正常前列腺組織、前列腺癌組織、前列腺癌轉移部位組織的不同基因表現區分開來,並找出可能的前列腺癌biomarkers。實驗結果跑了400種可能模型,選出2200個基因,有多個基因被重複選到,其中已被提出與前列腺癌相關的有31個基因,剩餘基因依照有被重複選到者及模型中誤差值較小者分組討論,共挑選344個,其中155個基因至今尚無蛋白質功能上的資料可循,而與癌症相關的有40個,其餘選出來的基因多涉及細胞活動的各種層面。

      Prostate cancer is one of the commonest carcinoma in west countries, and lots of gene researches have been studied. We applied a fuzzy neural network to analyze microarray data of prostate cancer, tried to distinguish the different expression profiling between normal tissues, local tumors, and metastatic tumors of patients and expected to find prostate cancer biomarkers. The network resulted of 400 models including 2,200 genes have 31 genes had been suggested relating to prostate cancer. We picked up totally 344 genes that were selected repetitively or with high accuracy in models, and among those genes, there are 40 genes had been proposed connected to carcinoma, but 155 genes didn’t have functional describes about proteins update, and other 148 genes were implicated corresponding to kinds of cellular processes.

    摘要..................................................................Ⅰ Abstract..............................................................Ⅱ 誌謝..................................................................Ⅲ Acknowledgments.......................................................Ⅴ 目錄..................................................................Ⅵ 表目錄................................................................Ⅸ 圖目錄................................................................Ⅹ 符號................................................................ⅩⅡ 第一章 前言...........................................................1 第二章 使用microarray於前列腺癌的研究概論.............................2 2-1 前列腺癌簡介....................................................2 2-2 Microarray簡介.................................................10 2-3 前列腺癌基因研究之回顧.........................................16 2-3-1 基因資料庫之簡介...........................................16 2-3-2 NCBI Gene資料庫中與前列腺癌相關之基因......................17 2-3-3 前列腺癌基因研究之文獻回顧.................................17 第三章 Type I FNN之理論..............................................19 3-1 倒傳遞類神經網路之介紹.........................................19 3-1-1 類神經網路的簡介...........................................19 3-1-2 倒傳遞網路的介紹...........................................22 3-2 模糊理論之介紹.................................................26 3-2-1 模糊集合與歸屬函數.........................................26 3-2-2 模糊控制的簡介.............................................29 3-3 Type I FNN的介紹...............................................33 3-4 Type I FNN的文獻回顧...........................................40 第四章 實驗內容......................................................41 4-1 實驗數據來源及前處理...........................................41 4-2 實驗器材.......................................................41 4-3 實驗方法.......................................................42 第五章 結果與討論....................................................47 5-1 多個基因組合的模型通常會比單一基因的模型預測得準...............47 5-2 基因其轉錄蛋白功能的探討.......................................56 5-2-1 分組A、C及A-C..............................................59 5-2-2 分組B、A-B、B-C、A-B-C.....................................60 5-2-3 分組D、A-D、C-D、A-C-D.....................................63 5-2-4 分組B-D、A-B-D、B-C-D、A-B-C-D.............................66 5-2-5 所有分組綜合討論...........................................67 5-3 歸屬函數及模糊規則的討論.......................................69 第六章 結論..........................................................77 參考文獻.............................................................78

    Ando, T., M. Suguro, T. Hanai, T. Kobayashi, H. Honda, and M. Seto, “Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma,” Japanese Journal of Cancer Resarch, 93: 1207-1212 (2002).

    Ando, T., M. Suguro, T. Kobayashi, M. Seto, and H. Honda, “Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models,” Journal of Bioscience and Bioengineering, 96: 161-167 (2003).

    Ang, J., M. Lijovic, L. K. Ashman, K. Kan, and A. G. Frauman, “CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator?” Cancer Epidemiol Biomarkers & Prevention, 13: 1717-1721 (2004).

    Benton, D., “Bioinformatics-principles and potential of a new multidisciplinary tool,” Trends in Biotechnology, 14: 261-272 (1996).

    Binnie, M. C., F. E. Alexander, C. Heald, and F. K. Habib, “Polymorphic forms of prostate specific antigen and their interaction with androgen receptor trinucleotide repeats in prostate cancer,” the Prostate, 9999: 1-7 (2005).

    Boguski, M. S., “Bioinformatics,” Current Opinion in Genetics & Development, 4: 383-388 (1994).

    Burmestera, J. K., B. K. Suarezb, J. H. Linc, C. H. Jind, R. D. Millere, K.-Q. Zhanga, S. A. Salzmana, D. J. Redingf, and W. J. Catalonag, “Analysis of candidate gene for prostste cancer,” Human Heredity, 57: 172-178 (2004).

    Catalona, W. J., Prostate cancer, Grune & Stratton, Inc, London, p. 22, (1984).

    Deyholos, M. K., and D. W. Galbraith, “High-density microarray for gene expression analysis,” Cytometry, 43: 229-238 (2001).

    Dhanasekaran, S. M., T. R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K. J. Pienta, M. A. Rubin, A. M. Chinnaiyan, “Delineation of prognostic biomarkers in prostate cancer,” Nature, 412: 822-826 (2001).

    Duggan, D. J., M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent, “Expression profiling using cDNA microarrays,” Nature Genetics Supplement, 21: 10-14 (1999).

    Edwards, S., C. Campbell, P. Flohr, J. Shipley, I. Giddings, R. te-Poele, A. Dodson, C. Foster, J. Clark, S. Jhavar, G. Kovacs, and C. S. Cooper, “Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer,” British Journal of Cancer, 1-6 (2004).

    Forster, T., D. Roy, and P. Ghazal, “Experiments using microarray technology: limitations and standard operating procedures,” Journal of Endocrinology, 178: 195-204 (2003).

    Gleason, D. F., “Histologic grading and clinical staging of carcinoma of the prostate,” Urologic Pathology: the Prostate, Philadelphia, Lea and Febiger, 171-197 (1977).

    Hanai, T., A. Kakamu, H. Honda, T. Furuhashi, Y. Uchikawa, and T. Kobayashi, “Modeling of total evaluation proxess of Ginjo sake using a fuzzy neural network,” Transactions of the Society of Instrument and Control Engineers, 32: 1113-1120 (1996).

    Hanai, T., A. Katayama, H. Honda, and T. Kobayashi, “Automatic fuzzy modeling for Ginjo sake brewing process using fuzzy neural networks,” Journal of Chemical Engineering of Japan, 30: 94-100 (1997).

    Hanai, T., T. Ohki, H. Honda, and T. Kobatashi, “Analysis of initial conditions for polymerization reaction using fuzzy neural network and genetic algorithm,” Computers and Chemical Engineering, 27: 1011-1019 (2003).

    Hibino, S., T. Hanai, E. Nagata, M. Matsubara, K. Fukagawa, T. Shirataki, H. Homda, and T. Kobayashi, “Fuzzy neural network model for assessment of Alzheimer-type dementia,” Journal of Chemical Engineering of Japan, 34: 936-942 (2001).

    Honda, H., T. Hanai, A. Katayama, H. Tohyama, and T. Kobayashi, “Temperature control of Ginjo sake mashing process by automatic fuzzy modeling using neural networks,” Journal of Fermentation and Bioengineering, 85: 107-112 (1998).

    Honda, H., and T. Kobayashi, “Selection of causal gene sets from gene expression profiling using GeneFIS R, new software based on FNN,” Genome Informatics, 14: 272-273 (2003).

    Horikawa, S., T. Furuhashi, Y. Uchikawa, and T. Tagawa, “A study on fuzzy modeling using fuzzy neural networks,” Proceedings of the International Fuzzy Engineering Symposium ’91, 1:562-573 (1991).

    Jain, K. K., “Applications of biochips: from diagnostics to personalized medicine,” Curr. Opin. Drug Discov. Devel., 7: 285-289 (2004).

    Jung, C., R.-S. Kim, H.-J. Zhang, S.-J. Lee, and M.-H. Jeng, “HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling,” Cancer Research, 64: 9185-9192 ( 2004).

    Kammerer, S., R. B. Roth, R. Reneland, G. Marnellos, C. R. Hoyal, N. J. Markward, F. Ebner, M. Kiechle, U. Schwarz-Boeger, L. R. Griffiths, C. Ulbrich, K. Chrobok, G. Forster, G. M. Praetorius, P. Meyer, J. Rehbock, C. R. Cantor, M. R. Nelson, and A. Braun1, “Large-scale association study identifies ICAM gene region as breast and prostate cancer susceptibility locus,” Cancer Research, 64: 8906-8910 ( 2004).

    Kim, J. H., “Bioinformatics and genomic medicine,” Genetics in Medicine, 4 Supplement: 62s-65s (2002).

    Kirby, R. S., T. J. Christmas, M. K. Brawer, Prostate cancer, Mosby, London, second edition, p. 6, (2001).

    Lapointe, J., C. Li, J. P. Higgins, M. van de Rijn, E. Bair, K. Montgomery, M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman, A. M. DeMarzo, R. Tibshirani, D. Botstein, P. O. Brown, J. D. Brooks, and J. R. Pollack, “Gene expression profiling identifies clinically relevant subtypes of prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, 101: 811-816 (2004).

    Luo, J., D. J. Duggan, Y. Chen, J. Sauvageot, C. M. Ewing, M. L. Bittner, J. M. Trent, and W. B. Isaacs, “Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling,” Cancer Research, 61: 4683-4688 (2001).

    Negri, E., C. Pelucchi, R. Talamini, M. Montella, S. Gallus, C. Bosetti, S. Franceschi, and C. L. Vecchia, “Family history of cancer and the risk of prostate cancer and benign prostatic hyperplasia,” International Journal of Cancer, 64: 717-722 (2004).

    Noguchi, H., T. Hanai, H. Honda, L. C. Harrison, and T. Kobayashi, “Fuzzy neural network-based prediction of the motif for MHC class II binding peptides,” Journal of Bioscience and Bioengineering, 93: 227-231 (2001).
    Quackenbush, J., “Computational analysis of microarray data,” Nature Genetics, 2: 418-427 (2001).

    Quackenbush, J., “Microarray data normalization and transformation,” Nature Genetics Supplement, 32: 496-501 (2002).

    Shah, R. B., R. Mehra, A. M. Chinnaiyan, R. Shen, D. Ghosh, M. Zhou, G. R. MacVicar, S. Varambally, J. Harwood, T. A. Bismar, R. Kim, M. A. Rubin, and K. J. Pienta, “Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program,” Cancer Research, 64: 9209-9216 (2004).

    Tomida, S., T. Hanai, H. Honda, and T. Kobayashi, “Construction of COD simulation model for activated sludge process by recursive fuzzy neural network,” Journal of Chemical Engineering of Japan, 34: 369-375 (2001).

    Tomida, S., T. Hanai, N. Ueda, H. Honda, and T. Kobayashi, “Construction of COD simulation model for activated sludge process by fuzzy neural network,” Journal of Bioscience and Bioengineering, 88: 215-220 (1999).

    Tominaga, O., F. Ito, T. Hanai, H. Homda, and T. Kobayashi, “Determination of the blending ratio of regular coffee samples by information technology,” Journal of Chemical Engineering of Japan, 35: 137-143 (2002).

    Tominaga, O., F. Ito, T. Hanai, H. Homda, and T. Kobayashi, “Modeling of consumers’ preferences for regular coffee samples and its application to product design,” Food Science and Technology Research, 8: 281-285 (2002).

    Tong, W., Q. Xie, H. Hong, L. Shi, H. Fang, R. Perkins, and E. F. Petricoin, “Using decision forest to classify prostate cancer samples on the basis of SELDI-TOF MS data: assessing chance correlation and prediction confidence,” Environ Health Perspect, 112: 1622-1627 (2004).

    Wiklund, F., B.-A. Jonsson, A. J. Brookes, L. Strömqvist, J. Adolfsson, M. Emanuelsson, H.-O. Adami, K. Augustsson-Bälter, and H. Gröberg, “Genetic analysis of the RNASWL gene in hereditary, familial, and sporadic prostate cancer,” Clinical Cancer Research, 10: 7150-7156 (2004).

    Yoshikawa, H., T. Hanai, S. Tomida, H. Honda, and T. Kobayashi, “Determination of Operating in activated sludge process using fuzzy neural network and genetic algorithm,” Journal of Chemical Engineering of Japan, 34: 1033-1039 (2001).

    TCOG攝護腺癌研究委員會主編,攝護腺(前列腺)癌診治共識,國家衛生研究院,台北市,再版,p. 3-61,(2003)。

    王進德、蕭大全編著,類神經網路與模糊控制理論入門,全華科技圖書股份有限公司,台北市,修訂版,p. 2-12, 23-36, 136-146, 194-206,(2003)。

    安藤達哉,マイクロアレイデータのFNNモデル解析によるリンバ腫患者の予後診断,日本名古屋大学工學研究科博士論文,(2003)。

    林信成、彭啟峰編著,OH! Fuzzy 模糊理論剖析,第三波文化事業股份有限公司,台北市,p. 1-2~1-3, 2-7~2-14, 5-10~5-31, 8-10~8-13,(1994)。

    莊順淑,“生物資訊概論”,中央研究院計算中心通訊,19: 154-167 (2003)。

    堀川慎一、古橋武、內川嘉樹,“ファジィニューラルネットワークの構成法と学習法”,日本ファジィ学会誌,4: 906-928 (1992)。

    張延驜、陳光國、張心緹編著,攝護腺瘤,眾光文化事業有限公司,台北市,p. 65-69, 77-81, 87-92,(1995)。

    梅約醫學中心主編,張國燕譯,Mayo Clinic on prostate cancer—攝護腺,天下生活出版股份有限公司,台北市,p. 1-30, 81-139,(2001)。

    梁雅芬、朱麗鈴、王麗萍編著,攝護腺癌(衛教手冊之十八),財團法人彰化基督教醫院腫瘤中心,彰化市,(2001)。

    葉怡成編著,應用類神經網路,儒林圖書有限公司,台北市,p. 1-2~1-4, 2-3~2-17,(1997)。

    蒲永孝,“談前列腺癌之診治”,大家健康雜誌,2: 13-15 (1997)。

    下載圖示 校內:2010-07-21公開
    校外:2010-07-21公開
    QR CODE