簡易檢索 / 詳目顯示

研究生: 范育旻
Fan, Yu-Min
論文名稱: 含N摻雜與活化軟碳電極製備及鹽水電解液之高性能超級電容器
High performances supercapacitor having N-doped, activated soft carbon electrode and bi-water-in-salt electrolyte
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 超級電容器軟碳WISE對稱電容氮摻雜
外文關鍵詞: supercapacitor, soft carbon, water-in-salt, symmetric cell, N-doped
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一種基於N摻雜並活化的軟碳電極和使用Water-in-salt electrolyte(WISE)的對稱超級電容器。首先通過氫氧化鉀活化軟碳,以擴大表面積並增加活性位點,然後使用微波水熱法利用環六亞甲基四胺對軟碳進行氮摻雜,以引入其官能團,改善表面親水性及導電性。並利用醋酸鉀混合醋酸鈉當作電解液(Bi-salt WISE)以增加電位窗範圍。利用使用掃描電子顯微鏡(SEM)、表面積及奈米孔徑分析儀(BET)、拉曼散射光譜(RAMAN)和X射線光電子能譜(XPS)分析處理過軟碳的表面型態及元素,結果顯示成功將2.1 %的氮摻雜在軟碳中。將所製備的軟碳塗覆到碳布基板上當作電極,在對稱系統中進行了各種電化學評估,例如循環伏安法(CV)、恆電流充放電(GCD)和電化學阻抗譜(EIS)。本研究展示出色電化學性能,包括2.1 V的寬電位窗口、1050 F/g的優異比電容(在0.8 A/g)、在2138 W/kg的功率密度下,具有92.6 Wh/kg卓越的能量密度。

    “Water-in-salt” has known as a novel electrolyte for widening the potential window in energy storage devices. In this work, we present an symmetric supercapacitor based on N-doped soft carbon electrode and the use of water-in-salt electrolyte. Soft carbon was first activated by potassium hydroxide to enlarge the surface area and increase active sites. Nitrogen was then doped to introduce additional functional groups using microwave-assisted hydrothermal treatment. The properties of the treated soft carbon were investigated using scanning electron microscope (SEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The as-prepared soft carbon was coated onto a carbon cloth substrate and used as electrode in symmetric supercapacitor. Various electrochemical evaluations, such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were performed. We demonstrate the excellent electrochmeical performce of the symmetric supercapacitor, including a wide potential window of 2.1.

    摘要 I Extend abstract II 誌謝 XXIV 總目錄 XXV 圖目錄 XXVIII 表目錄 XXXII 第 1 章 前言 1 第 2 章 文獻回顧 3 2.1 超級電容之介紹 3 2.1.1 超級電容器背景 3 2.1.2 電雙層電容器 (EDLC) 5 2.1.3 擬電容器 (PC) 8 2.2 電解液之介紹 10 2.2.1 各種電解液之背景 10 2.2.2 水性電解液 11 2.2.3 固態電解液 13 2.2.4 有機電解液 15 2.2.5 離子電解液 17 2.2.6 WISE 19 2.3 碳材料之介紹 23 2.3.1 硬碳 26 2.3.2 軟碳 28 2.4 碳材料於超級電容器之改善 31 2.4.1 改善表面積 31 2.4.2 摻雜雜原子/官能基 35 2.4.2.1 氮 36 2.4.2.2 氧 38 2.5 研究動機與目的 39 第 3 章 儀器設備與實驗方法 40 3.1 實驗藥品 40 3.2 實驗流程 41 3.2.1 軟碳之表面活化 41 3.2.2 軟碳之摻雜處理 42 3.3 實驗製備 43 3.3.1 軟碳之表面活化 43 3.3.2 軟碳之摻雜處理 43 3.3.3 軟碳表面活化與摻雜處理 43 3.4 分析方法 44 3.4.1 掃描式電子顯微鏡 44 3.4.2 表面積及奈米孔徑分析儀 44 3.4.3 X射線光電子能譜 44 3.4.4 拉曼散射光譜 45 3.4.5 接觸角測試 45 3.4.6 電化學性質分析 45 第 4 章 結果與討論 47 4.1 軟碳 (SC) 47 4.1.1 SC之表面結構分析 47 4.1.2 SC之電化學分析 50 4.2 不同比例下,KOH處理過後之軟碳 (KSC-x) 52 4.2.1 KSC-x之表面分析 52 4.2.2 KSC-x之晶體及元素分析 57 4.2.3 KSC-x之電化學分析 60 4.3 不同比例下,HMT摻雜過後之軟碳 (NSC-y) 63 4.3.1 NSC-y之表面結構分析 63 4.3.2 NSC-y之電化學分析 67 4.4 經KOH及HMT摻雜過後之軟碳 (KNSC-xy) 69 4.4.1 KNSC-58之表面結構分析 69 4.4.2 KNSC-58之電化學分析 71 4.5 經酸洗過後的基板(HACC) 75 4.5.1 電化學分析 75 第 5 章 結論 76 第 6 章 參考文獻 77 第 7 章 附錄 87

    1. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1): p. 30-37, 2019.
    2. Barzegar, F., et al., Design and characterization of asymmetric supercapacitor useful in hybrid energy storage systems for electric vehicles. IFAC-PapersOnLine, 50(2): p. 83-87, 2017.
    3. Lin, Z., et al., Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 21(4): p. 419-436, 2018.
    4. Kate, R.S., S.A. Khalate, and R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. Journal of Alloys and Compounds, 734: p. 89-111, 2018.
    5. Theerthagiri, J., et al., Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceramics International, 46(10, Part A): p. 14317-14345, 2020.
    6. Adusei, P.K., et al., Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. Journal of Energy Chemistry, 40: p. 120-131, 2020
    7. Largeot, C., et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 130(9): p. 2730-2731, 2008.
    8. Balasubramaniam, S., et al., Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 12: p. 1-46, 2020.
    9. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21): p. 7484-7539, 2015.
    10. Wu, Z.S., et al., Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Advanced Functional Materials, 20(20): p. 3595-3602, 2010.
    11. Park, S., et al., Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chemical Engineering Journal, 384: p. 123269, 2020.
    12. Hou, Y., et al., Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters, 10(7): p. 2727-2733, 2010.
    13. Broughton, J.N. and M.J. Brett, Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochimica Acta, 50(24): p. 4814-4819, 2005.
    14. Sun, W., et al., Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. Carbon, 132: p. 667-677, 2018.
    15. Velmurugan, R., et al., Robust, Flexible, and Binder Free Highly Crystalline V2O5 Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry & Engineering, 7(15): p. 13115-13126, 2019.
    16. Elmouwahidi, A., et al., Carbon–TiO 2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. Journal of Materials Chemistry A, 6(2): p. 633-644, 2018.
    17. Pham, V.H., et al., Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon, 126: p. 135-144, 2018.
    18. Borenstein, A., et al., Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25): p. 12653-12672, 2017.
    19. Panigrahi, K., P. Howli, and K.K. Chattopadhyay, 3D network of V2O5 for flexible symmetric supercapacitor. Electrochimica Acta, 337: p. 135701, 2020.
    20. Zhang, Y. and S.-J. Park, Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon, 122: p. 287-297, 2017.
    21. Zhang, K., et al., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 22(4): p. 1392-1401. 2010.
    22. Wang, Z., et al., Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & Interfaces, 10(12): p. 10437-10444, 2018.
    23. Qu, Y., et al., Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 127: p. 77-84, 2018.
    24. Han, Y. and L. Dai, Conducting polymers for flexible supercapacitors. Macromolecular Chemistry and Physics, 220(3): p. 1800355, 2019.
    25. Mirzaeian, M., et al., Electrode and electrolyte materials for electrochemical capacitors. International Journal of Hydrogen Energy, 42(40): p. 25565-25587, 2017.
    26. Ma, F., et al., Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Advances, 5(55): p. 44416-44422, 2015.
    27. Zhang, D., et al., Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. Journal of Materials Chemistry A, 1(26): p. 7584-7591, 2013.
    28. Wang, Y., et al., High-performance flexible MnO2@carbonized cotton textile electrodes for enlarged operating potential window symmetrical supercapacitors. Electrochimica Acta, 299: p. 12-18, 2019.
    29. Sayahi, H., et al., Facile and economical fabrication of magnetite/graphite nanocomposites for supercapacitor electrodes with significantly extended potential window. Journal of Alloys and Compounds, 778: p. 633-642, 2019.
    30. Jiang, J., et al., A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochimica Acta, 274: p. 121-130, 2018.
    31. Bichat, M.P., E. Raymundo-Piñero, and F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 48(15): p. 4351-4361, 2010.
    32. Chae, J.H. and G.Z. Chen, Influences of ions and temperature on performance of carbon nano-particulates in supercapacitors with neutral aqueous electrolytes. Particuology, 15: p. 9-17, 2014.
    33. Li, S., et al., Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC advances, 2(8): p. 3298-3308, 2012.
    34. Kang, D.A., et al., High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 384: p. 123308, 2020.
    35. Sekhon, S., Conductivity behaviour of polymer gel electrolytes: Role of polymer. Bulletin of Materials Science, 26(3): p. 321-328, 2003.
    36. Sikdar, A., et al., Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: High volumetric, areal energy density and potential wearability. Electrochimica Acta, 332: p. 135492, 2020.
    37. Wang, Z., et al., Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering: R: Reports, 139: p. 100520, 2020.
    38. Han, Y., et al., Facile preparation of reduced graphene oxide/polypyrrole nanocomposites with urchin-like microstructure for wide-potential-window supercapacitors. Electrochimica Acta, 289: p. 238-247, 2018.
    39. Hong, S., et al., Reconfigurable solid-state electrolytes for high performance flexible supercapacitor. Journal of Power Sources, 432: p. 16-23, 2019.
    40. Zheng, Q., et al., Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 7(5): p. 3263-3271, 2015.
    41. Meng, C., et al., Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Letters, 10(10): p. 4025-4031, 2010.
    42. Azaïs, P., et al., Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 171(2): p. 1046-1053, 2007.
    43. Liu, Y., et al., Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications. Journal of Power Sources, 434: p. 226734, 2019.
    44. Guo, J., et al., High voltage supercapacitor based on nonflammable high-concentration-ionic liquid electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598: p. 124858, 2020.
    45. Xiao, D., et al., Optimization of Organic/Water Hybrid Electrolytes for High‐Rate Carbon‐Based Supercapacitor. Advanced Functional Materials, 29(42): p. 1904136, 2019.
    46. Pazhamalai, P., et al., Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochimica Acta, 295: p. 591-598, 2019.
    47. Yang, C.R., Y.Y. Wang, and C.C. Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of Power Sources, 72(1): p. 66-70, 1998.
    48. Kota, M., M. Jana, and H.S. Park, Improving energy density of supercapacitors using heteroatom-incorporated three-dimensional macro-porous graphene electrodes and organic electrolytes. Journal of Power Sources, 399: p. 83-88, 2018.
    49. Izadi‐Najafabadi, A., et al., Extracting the full potential of single‐walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Advanced Materials, 22(35): p. E235-E241, 2010.
    50. Brousse, K., et al., Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. Journal of Power Sources, 328: p. 520-526, 2016.
    51. Salunkhe, R.R., et al., A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical communications, 52(26): p. 4764-4767, 2016.
    52. Li, Z.-S., et al., Manganese dioxide-coated activated mesocarbon microbeads for supercapacitors in organic electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366(1): p. 104-109, 2010.
    53. Kesavan, T., et al., Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor. Microporous and Mesoporous Materials, 274: p. 236-244, 2019.
    54. Heckmann, A., et al., Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochimica Acta, 260: p. 514-525, 2018.
    55. An, Y., et al., The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochimica Acta, 56(13): p. 4841-4848, 2011.
    56. Kawamura, T., S. Okada, and J.-i. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 156(2): p. 547-554, 2006.
    57. Kawamura, T., et al., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of Power Sources, 104(2): p. 260-264, 2002.
    58. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 196(22): p. 9743-9750, 2011.
    59. Balducci, A., et al., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 165(2): p. 922-927, 2007.
    60. Lin, R., et al., Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte. The Journal of Physical Chemistry Letters, 2(19): p. 2396-2401, 2011.
    61. Wang, X., et al., Selective charging behavior in an ionic mixture electrolyte-supercapacitor system for higher energy and power. Journal of the American Chemical Society, 139(51): p. 18681-18687, 2017.
    62. Song, Z., et al., High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chemical Engineering Journal, 372: p. 1216-1225, 2019.
    63. Suo, L., et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 350(6263): p. 938-943, 2015.
    64. Zheng, J.P. and T. Jow, The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors. Journal of The Electrochemical Society, 144(7): p. 2417-2420, 1997.
    65. Mahankali, K., et al., Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochimica Acta, 326: p. 134989, 2019.
    66. Lukatskaya, M.R., et al., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science, 11(10): p. 2876-2883, 2018.
    67. Bu, X., et al., A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of materials chemistry A, 7(13): p. 7541-7547, 2019.
    68. Chen, S., et al., Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 28: p. 205-215, 2020.
    69. Liu, T., et al., A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Chemical Communications, 55(85): p. 12817-12820, 2019.
    70. Hasegawa, G., et al., Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chemistry of Materials, 28(11): p. 3944-3950, 2016.
    71. Liu, X., et al., Nitrogen-doped multi-scale porous carbon for high voltage aqueous supercapacitors. Frontiers in chemistry, 6: p. 475, 2018.
    72. Wang, S., et al., Ultrahigh Surface Area N‐Doped Hierarchically Porous Carbon for Enhanced CO2 Capture and Electrochemical Energy Storage. ChemSusChem, 12(15): p. 3541-3549, 2019.
    73. Qian, X., et al., Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 388: p. 124208, 2020.
    74. Tian, Z., et al., Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors. Functional Materials Letters, 10(06): p. 1750081, 2017.
    75. Saurel, D., et al., From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization. Advanced Energy Materials, 8(17): p. 1703268, 2018.
    76. Xie, F., et al., Hard–soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 29(24): p. 1901072, 2019.
    77. Jian, Z., et al., Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials, 29(5): p. 2314-2320, 2017.
    78. Heckmann, A., et al., New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree. Carbon, 131: p. 201-212, 2018.
    79. Wang, F., et al., Nano-silicon @ soft carbon embedded in graphene scaffold: High-performance 3D free-standing anode for lithium-ion batteries. Journal of Power Sources, 450: p. 227692, 2020.
    80. Jian, Z., et al., Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries. Advanced Functional Materials, 27(26): p. 1700324, 2017.
    81. Jenkins, G. and K. Kawamura, Structure of glassy carbon. Nature, 231(5299): p. 175-176, 1971.
    82. Schueller, O.J.A., S.T. Brittain, and G.M. Whitesides, Fabrication of glassy carbon microstructures by soft lithography. Sensors and Actuators A: Physical, 72(2): p. 125-139, 1999.
    83. Dong, S., et al., Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 6(33): p. 15954-15960, 2018.
    84. Ponrouch, A., A.R. Goñi, and M.R. Palacín, High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochemistry Communications, 27: p. 85-88, 2013.
    85. Wang, Q., et al., Monodispersed hard carbon spherules with uniform nanopores. Carbon, 39(14): p. 2211-2214, 2001.
    86. Hu, M., et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Science advances, 3(6): p. e1603213, 2017.
    87. Irisarri, E., A. Ponrouch, and M. Palacin, Hard carbon negative electrode materials for sodium-ion batteries. Journal of The Electrochemical Society, 162(14): p. A2476, 2015.
    88. Luo, W., et al., Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 1(9): p. 516-522, 2015.
    89. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 4(17): p. 6472-6478, 2016.
    90. Liu, C., et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chemical Engineering Journal, 382: p. 121759, 2020.
    91. Schroeder, M., et al., On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. Journal of Power Sources, 238: p. 388-394, 2013.
    92. Ohta, T., et al., Effects of electrolyte composition on the electrochemical activation of alkali-treated soft carbon as an electric double-layer capacitor electrode. Journal of Power Sources, 198: p. 408-415, 2012.
    93. Huang, J., et al., Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance. Journal of Materials Research, 32(7): p. 1248-1257, 2017.
    94. Kim, I.-T., et al., Combination of alkali-treated soft carbon and activated carbon fiber electrodes for asymmetric electric double-layer capacitor. Electrochemistry, 80(6): p. 415-420, 2012.
    95. Tan, M.-h., et al., Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes. New Carbon Materials, 31(3): p. 343-351, 2016.
    96. Qiao, W., S.-H. Yoon, and I. Mochida, KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy & Fuels, 20(4): p. 1680-1684, 2006.
    97. Wang, J. and S. Kaskel, KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45): p. 23710-23725, 2012.
    98. Lozano-Castello, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 45(13): p. 2529-2536, 2007.
    99. Dong, D., et al., Enhancing the pore wettability of coal-based porous carbon as electrode materials for high performance supercapacitors. Materials Chemistry and Physics, 252: p. 123381, 2020.
    100. Gao, S., et al., Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustainable Chemistry & Engineering, 6(3): p. 3255-3263, 2018.
    101. Tang, K., et al., Macropore- and Micropore-Dominated Carbon Derived from Poly(vinyl alcohol) and Polyvinylpyrrolidone for Supercapacitor and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 5(12): p. 11324-11333, 2017.
    102. Mitani, S., et al., Activation of coal tar derived needle coke with K2CO3 into an active carbon of low surface area and its performance as unique electrode of electric double-layer capacitor. Carbon, 43(14): p. 2960-2967, 2005.
    103. Roldán, S., et al., Comparison between Electrochemical Capacitors Based on NaOH- and KOH-Activated Carbons. Energy & Fuels, 24(6): p. 3422-3428, 2010.
    104. Chen, X., et al., Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder. Chinese Journal of Chemical Engineering, 28(1): p. 299-306, 2020.
    105. Gao, Y., et al., Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy, 72: p. 104666, 2020.
    106. Li, J., et al., Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 164: p. 42-50, 2020.
    107. Sun, C.-L., et al., Atomic-Scale Deformation in N-Doped Carbon Nanotubes. Journal of the American Chemical Society, 128(26): p. 8368-8369, 2006.
    108. Pels, J.R., et al., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 33(11): p. 1641-1653, 1995.
    109. Xing, Z., et al., One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Scientific reports, 6(1): p. 1-10, 2016.
    110. Zhang, S., et al., Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 294: p. 183-191, 2019.
    111. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5): p. 781-794, 2012.
    112. Wang, Q., J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science, 9(3): p. 729-762, 2016.
    113. Bao, Q., et al., Supercapacitance of Solid Carbon Nanofibers Made from Ethanol Flames. The Journal of Physical Chemistry C, 112(10): p. 3612-3618, 2008.
    114. Liu, H., et al., Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources, 285: p. 303-309, 2015.
    115. Fan, L.-Z., et al., Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochimica Acta, 105: p. 299-304, 2013.
    116. Montes-Morán, M.A., et al., On the nature of basic sites on carbon surfaces: an overview. Carbon, 42(7): p. 1219-1225, 2004.
    117. Gurten Inal, I.I. and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514: p. 145895, 2020.
    118. Schuepfer, D.B., et al., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon, 161: p. 359-372, 2020.
    119. Cuesta, A., et al., Raman microprobe studies on carbon materials. Carbon, 32(8): p. 1523-1532, 1994.
    120. Marsh, H., A. Wilkinson, and J. Machnikowski, Study of the reaction of cokes with KOH under nitrogen. Fuel, 61(9): p. 834-839, 1982.
    121. Król, M., G. Gryglewicz, and J. Machnikowski, KOH activation of pitch-derived carbonaceous materials—Effect of carbonization degree. Fuel Processing Technology, 92(1): p. 158-165, 2011.
    122. He, Y., et al., Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochimica Acta, 282: p. 618-625, 2018.
    123. Deng, Y., et al., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 4(4): p. 1144-1173, 2016.

    下載圖示 校內:2025-07-23公開
    校外:2025-07-23公開
    QR CODE