| 研究生: |
范育旻 Fan, Yu-Min |
|---|---|
| 論文名稱: |
含N摻雜與活化軟碳電極製備及鹽水電解液之高性能超級電容器 High performances supercapacitor having N-doped, activated soft carbon electrode and bi-water-in-salt electrolyte |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 超級電容器 、軟碳 、WISE 、對稱電容 、氮摻雜 |
| 外文關鍵詞: | supercapacitor, soft carbon, water-in-salt, symmetric cell, N-doped |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種基於N摻雜並活化的軟碳電極和使用Water-in-salt electrolyte(WISE)的對稱超級電容器。首先通過氫氧化鉀活化軟碳,以擴大表面積並增加活性位點,然後使用微波水熱法利用環六亞甲基四胺對軟碳進行氮摻雜,以引入其官能團,改善表面親水性及導電性。並利用醋酸鉀混合醋酸鈉當作電解液(Bi-salt WISE)以增加電位窗範圍。利用使用掃描電子顯微鏡(SEM)、表面積及奈米孔徑分析儀(BET)、拉曼散射光譜(RAMAN)和X射線光電子能譜(XPS)分析處理過軟碳的表面型態及元素,結果顯示成功將2.1 %的氮摻雜在軟碳中。將所製備的軟碳塗覆到碳布基板上當作電極,在對稱系統中進行了各種電化學評估,例如循環伏安法(CV)、恆電流充放電(GCD)和電化學阻抗譜(EIS)。本研究展示出色電化學性能,包括2.1 V的寬電位窗口、1050 F/g的優異比電容(在0.8 A/g)、在2138 W/kg的功率密度下,具有92.6 Wh/kg卓越的能量密度。
“Water-in-salt” has known as a novel electrolyte for widening the potential window in energy storage devices. In this work, we present an symmetric supercapacitor based on N-doped soft carbon electrode and the use of water-in-salt electrolyte. Soft carbon was first activated by potassium hydroxide to enlarge the surface area and increase active sites. Nitrogen was then doped to introduce additional functional groups using microwave-assisted hydrothermal treatment. The properties of the treated soft carbon were investigated using scanning electron microscope (SEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The as-prepared soft carbon was coated onto a carbon cloth substrate and used as electrode in symmetric supercapacitor. Various electrochemical evaluations, such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were performed. We demonstrate the excellent electrochmeical performce of the symmetric supercapacitor, including a wide potential window of 2.1.
1. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1): p. 30-37, 2019.
2. Barzegar, F., et al., Design and characterization of asymmetric supercapacitor useful in hybrid energy storage systems for electric vehicles. IFAC-PapersOnLine, 50(2): p. 83-87, 2017.
3. Lin, Z., et al., Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 21(4): p. 419-436, 2018.
4. Kate, R.S., S.A. Khalate, and R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. Journal of Alloys and Compounds, 734: p. 89-111, 2018.
5. Theerthagiri, J., et al., Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceramics International, 46(10, Part A): p. 14317-14345, 2020.
6. Adusei, P.K., et al., Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. Journal of Energy Chemistry, 40: p. 120-131, 2020
7. Largeot, C., et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 130(9): p. 2730-2731, 2008.
8. Balasubramaniam, S., et al., Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 12: p. 1-46, 2020.
9. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21): p. 7484-7539, 2015.
10. Wu, Z.S., et al., Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Advanced Functional Materials, 20(20): p. 3595-3602, 2010.
11. Park, S., et al., Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chemical Engineering Journal, 384: p. 123269, 2020.
12. Hou, Y., et al., Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters, 10(7): p. 2727-2733, 2010.
13. Broughton, J.N. and M.J. Brett, Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochimica Acta, 50(24): p. 4814-4819, 2005.
14. Sun, W., et al., Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. Carbon, 132: p. 667-677, 2018.
15. Velmurugan, R., et al., Robust, Flexible, and Binder Free Highly Crystalline V2O5 Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry & Engineering, 7(15): p. 13115-13126, 2019.
16. Elmouwahidi, A., et al., Carbon–TiO 2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. Journal of Materials Chemistry A, 6(2): p. 633-644, 2018.
17. Pham, V.H., et al., Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon, 126: p. 135-144, 2018.
18. Borenstein, A., et al., Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25): p. 12653-12672, 2017.
19. Panigrahi, K., P. Howli, and K.K. Chattopadhyay, 3D network of V2O5 for flexible symmetric supercapacitor. Electrochimica Acta, 337: p. 135701, 2020.
20. Zhang, Y. and S.-J. Park, Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon, 122: p. 287-297, 2017.
21. Zhang, K., et al., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 22(4): p. 1392-1401. 2010.
22. Wang, Z., et al., Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & Interfaces, 10(12): p. 10437-10444, 2018.
23. Qu, Y., et al., Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 127: p. 77-84, 2018.
24. Han, Y. and L. Dai, Conducting polymers for flexible supercapacitors. Macromolecular Chemistry and Physics, 220(3): p. 1800355, 2019.
25. Mirzaeian, M., et al., Electrode and electrolyte materials for electrochemical capacitors. International Journal of Hydrogen Energy, 42(40): p. 25565-25587, 2017.
26. Ma, F., et al., Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Advances, 5(55): p. 44416-44422, 2015.
27. Zhang, D., et al., Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. Journal of Materials Chemistry A, 1(26): p. 7584-7591, 2013.
28. Wang, Y., et al., High-performance flexible MnO2@carbonized cotton textile electrodes for enlarged operating potential window symmetrical supercapacitors. Electrochimica Acta, 299: p. 12-18, 2019.
29. Sayahi, H., et al., Facile and economical fabrication of magnetite/graphite nanocomposites for supercapacitor electrodes with significantly extended potential window. Journal of Alloys and Compounds, 778: p. 633-642, 2019.
30. Jiang, J., et al., A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochimica Acta, 274: p. 121-130, 2018.
31. Bichat, M.P., E. Raymundo-Piñero, and F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 48(15): p. 4351-4361, 2010.
32. Chae, J.H. and G.Z. Chen, Influences of ions and temperature on performance of carbon nano-particulates in supercapacitors with neutral aqueous electrolytes. Particuology, 15: p. 9-17, 2014.
33. Li, S., et al., Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC advances, 2(8): p. 3298-3308, 2012.
34. Kang, D.A., et al., High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 384: p. 123308, 2020.
35. Sekhon, S., Conductivity behaviour of polymer gel electrolytes: Role of polymer. Bulletin of Materials Science, 26(3): p. 321-328, 2003.
36. Sikdar, A., et al., Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: High volumetric, areal energy density and potential wearability. Electrochimica Acta, 332: p. 135492, 2020.
37. Wang, Z., et al., Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering: R: Reports, 139: p. 100520, 2020.
38. Han, Y., et al., Facile preparation of reduced graphene oxide/polypyrrole nanocomposites with urchin-like microstructure for wide-potential-window supercapacitors. Electrochimica Acta, 289: p. 238-247, 2018.
39. Hong, S., et al., Reconfigurable solid-state electrolytes for high performance flexible supercapacitor. Journal of Power Sources, 432: p. 16-23, 2019.
40. Zheng, Q., et al., Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 7(5): p. 3263-3271, 2015.
41. Meng, C., et al., Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Letters, 10(10): p. 4025-4031, 2010.
42. Azaïs, P., et al., Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 171(2): p. 1046-1053, 2007.
43. Liu, Y., et al., Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications. Journal of Power Sources, 434: p. 226734, 2019.
44. Guo, J., et al., High voltage supercapacitor based on nonflammable high-concentration-ionic liquid electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598: p. 124858, 2020.
45. Xiao, D., et al., Optimization of Organic/Water Hybrid Electrolytes for High‐Rate Carbon‐Based Supercapacitor. Advanced Functional Materials, 29(42): p. 1904136, 2019.
46. Pazhamalai, P., et al., Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochimica Acta, 295: p. 591-598, 2019.
47. Yang, C.R., Y.Y. Wang, and C.C. Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of Power Sources, 72(1): p. 66-70, 1998.
48. Kota, M., M. Jana, and H.S. Park, Improving energy density of supercapacitors using heteroatom-incorporated three-dimensional macro-porous graphene electrodes and organic electrolytes. Journal of Power Sources, 399: p. 83-88, 2018.
49. Izadi‐Najafabadi, A., et al., Extracting the full potential of single‐walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Advanced Materials, 22(35): p. E235-E241, 2010.
50. Brousse, K., et al., Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. Journal of Power Sources, 328: p. 520-526, 2016.
51. Salunkhe, R.R., et al., A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical communications, 52(26): p. 4764-4767, 2016.
52. Li, Z.-S., et al., Manganese dioxide-coated activated mesocarbon microbeads for supercapacitors in organic electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366(1): p. 104-109, 2010.
53. Kesavan, T., et al., Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor. Microporous and Mesoporous Materials, 274: p. 236-244, 2019.
54. Heckmann, A., et al., Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochimica Acta, 260: p. 514-525, 2018.
55. An, Y., et al., The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochimica Acta, 56(13): p. 4841-4848, 2011.
56. Kawamura, T., S. Okada, and J.-i. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 156(2): p. 547-554, 2006.
57. Kawamura, T., et al., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of Power Sources, 104(2): p. 260-264, 2002.
58. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 196(22): p. 9743-9750, 2011.
59. Balducci, A., et al., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 165(2): p. 922-927, 2007.
60. Lin, R., et al., Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte. The Journal of Physical Chemistry Letters, 2(19): p. 2396-2401, 2011.
61. Wang, X., et al., Selective charging behavior in an ionic mixture electrolyte-supercapacitor system for higher energy and power. Journal of the American Chemical Society, 139(51): p. 18681-18687, 2017.
62. Song, Z., et al., High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chemical Engineering Journal, 372: p. 1216-1225, 2019.
63. Suo, L., et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 350(6263): p. 938-943, 2015.
64. Zheng, J.P. and T. Jow, The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors. Journal of The Electrochemical Society, 144(7): p. 2417-2420, 1997.
65. Mahankali, K., et al., Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochimica Acta, 326: p. 134989, 2019.
66. Lukatskaya, M.R., et al., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science, 11(10): p. 2876-2883, 2018.
67. Bu, X., et al., A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of materials chemistry A, 7(13): p. 7541-7547, 2019.
68. Chen, S., et al., Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 28: p. 205-215, 2020.
69. Liu, T., et al., A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Chemical Communications, 55(85): p. 12817-12820, 2019.
70. Hasegawa, G., et al., Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chemistry of Materials, 28(11): p. 3944-3950, 2016.
71. Liu, X., et al., Nitrogen-doped multi-scale porous carbon for high voltage aqueous supercapacitors. Frontiers in chemistry, 6: p. 475, 2018.
72. Wang, S., et al., Ultrahigh Surface Area N‐Doped Hierarchically Porous Carbon for Enhanced CO2 Capture and Electrochemical Energy Storage. ChemSusChem, 12(15): p. 3541-3549, 2019.
73. Qian, X., et al., Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 388: p. 124208, 2020.
74. Tian, Z., et al., Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors. Functional Materials Letters, 10(06): p. 1750081, 2017.
75. Saurel, D., et al., From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization. Advanced Energy Materials, 8(17): p. 1703268, 2018.
76. Xie, F., et al., Hard–soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 29(24): p. 1901072, 2019.
77. Jian, Z., et al., Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials, 29(5): p. 2314-2320, 2017.
78. Heckmann, A., et al., New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree. Carbon, 131: p. 201-212, 2018.
79. Wang, F., et al., Nano-silicon @ soft carbon embedded in graphene scaffold: High-performance 3D free-standing anode for lithium-ion batteries. Journal of Power Sources, 450: p. 227692, 2020.
80. Jian, Z., et al., Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries. Advanced Functional Materials, 27(26): p. 1700324, 2017.
81. Jenkins, G. and K. Kawamura, Structure of glassy carbon. Nature, 231(5299): p. 175-176, 1971.
82. Schueller, O.J.A., S.T. Brittain, and G.M. Whitesides, Fabrication of glassy carbon microstructures by soft lithography. Sensors and Actuators A: Physical, 72(2): p. 125-139, 1999.
83. Dong, S., et al., Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 6(33): p. 15954-15960, 2018.
84. Ponrouch, A., A.R. Goñi, and M.R. Palacín, High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochemistry Communications, 27: p. 85-88, 2013.
85. Wang, Q., et al., Monodispersed hard carbon spherules with uniform nanopores. Carbon, 39(14): p. 2211-2214, 2001.
86. Hu, M., et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Science advances, 3(6): p. e1603213, 2017.
87. Irisarri, E., A. Ponrouch, and M. Palacin, Hard carbon negative electrode materials for sodium-ion batteries. Journal of The Electrochemical Society, 162(14): p. A2476, 2015.
88. Luo, W., et al., Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 1(9): p. 516-522, 2015.
89. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 4(17): p. 6472-6478, 2016.
90. Liu, C., et al., Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chemical Engineering Journal, 382: p. 121759, 2020.
91. Schroeder, M., et al., On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. Journal of Power Sources, 238: p. 388-394, 2013.
92. Ohta, T., et al., Effects of electrolyte composition on the electrochemical activation of alkali-treated soft carbon as an electric double-layer capacitor electrode. Journal of Power Sources, 198: p. 408-415, 2012.
93. Huang, J., et al., Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance. Journal of Materials Research, 32(7): p. 1248-1257, 2017.
94. Kim, I.-T., et al., Combination of alkali-treated soft carbon and activated carbon fiber electrodes for asymmetric electric double-layer capacitor. Electrochemistry, 80(6): p. 415-420, 2012.
95. Tan, M.-h., et al., Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes. New Carbon Materials, 31(3): p. 343-351, 2016.
96. Qiao, W., S.-H. Yoon, and I. Mochida, KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy & Fuels, 20(4): p. 1680-1684, 2006.
97. Wang, J. and S. Kaskel, KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45): p. 23710-23725, 2012.
98. Lozano-Castello, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 45(13): p. 2529-2536, 2007.
99. Dong, D., et al., Enhancing the pore wettability of coal-based porous carbon as electrode materials for high performance supercapacitors. Materials Chemistry and Physics, 252: p. 123381, 2020.
100. Gao, S., et al., Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustainable Chemistry & Engineering, 6(3): p. 3255-3263, 2018.
101. Tang, K., et al., Macropore- and Micropore-Dominated Carbon Derived from Poly(vinyl alcohol) and Polyvinylpyrrolidone for Supercapacitor and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 5(12): p. 11324-11333, 2017.
102. Mitani, S., et al., Activation of coal tar derived needle coke with K2CO3 into an active carbon of low surface area and its performance as unique electrode of electric double-layer capacitor. Carbon, 43(14): p. 2960-2967, 2005.
103. Roldán, S., et al., Comparison between Electrochemical Capacitors Based on NaOH- and KOH-Activated Carbons. Energy & Fuels, 24(6): p. 3422-3428, 2010.
104. Chen, X., et al., Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder. Chinese Journal of Chemical Engineering, 28(1): p. 299-306, 2020.
105. Gao, Y., et al., Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy, 72: p. 104666, 2020.
106. Li, J., et al., Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 164: p. 42-50, 2020.
107. Sun, C.-L., et al., Atomic-Scale Deformation in N-Doped Carbon Nanotubes. Journal of the American Chemical Society, 128(26): p. 8368-8369, 2006.
108. Pels, J.R., et al., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 33(11): p. 1641-1653, 1995.
109. Xing, Z., et al., One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Scientific reports, 6(1): p. 1-10, 2016.
110. Zhang, S., et al., Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 294: p. 183-191, 2019.
111. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5): p. 781-794, 2012.
112. Wang, Q., J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science, 9(3): p. 729-762, 2016.
113. Bao, Q., et al., Supercapacitance of Solid Carbon Nanofibers Made from Ethanol Flames. The Journal of Physical Chemistry C, 112(10): p. 3612-3618, 2008.
114. Liu, H., et al., Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources, 285: p. 303-309, 2015.
115. Fan, L.-Z., et al., Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochimica Acta, 105: p. 299-304, 2013.
116. Montes-Morán, M.A., et al., On the nature of basic sites on carbon surfaces: an overview. Carbon, 42(7): p. 1219-1225, 2004.
117. Gurten Inal, I.I. and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514: p. 145895, 2020.
118. Schuepfer, D.B., et al., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon, 161: p. 359-372, 2020.
119. Cuesta, A., et al., Raman microprobe studies on carbon materials. Carbon, 32(8): p. 1523-1532, 1994.
120. Marsh, H., A. Wilkinson, and J. Machnikowski, Study of the reaction of cokes with KOH under nitrogen. Fuel, 61(9): p. 834-839, 1982.
121. Król, M., G. Gryglewicz, and J. Machnikowski, KOH activation of pitch-derived carbonaceous materials—Effect of carbonization degree. Fuel Processing Technology, 92(1): p. 158-165, 2011.
122. He, Y., et al., Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochimica Acta, 282: p. 618-625, 2018.
123. Deng, Y., et al., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 4(4): p. 1144-1173, 2016.