簡易檢索 / 詳目顯示

研究生: 姜為
Jiang, Wei
論文名稱: 大曲率之S形微流道中流體之混合的數值研究
Numerical study on mixing of fluids in S-shaped microchannels with strong curvature
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 108
中文關鍵詞: 混合微流道大曲率流體顆粒追跡多重渦流
外文關鍵詞: mixing, microchannel, strong curvature, fluid particle tracking, multi-vortices
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用商用計算軟體(CFDRC)模擬加入玫瑰紅螢光之去離子水溶液於具大曲率S形流道之微混合器中的流動與混合行為。並探討微混合器的幾何外形(特別是在大曲率的情況下)與流體流速對流體的流動與混合行為的影響。並參考他人提出之混合式方法以CFDRC計算出的速度場為基礎進行流體顆粒追跡,而分子擴散方面,則利用物種方程式計算質量擴散,此混合式方法可得到另一濃度數值解,可跟CFDRC模擬出的結果比較。根據CFDRC模擬的結果,有以下的結論:(一)因彎曲流道的大曲率或在較大的雷諾數時,主流道截面會出現多重渦流,拉伸流體間的交界面,有助混合。(二)大致上,曲率比(彎曲流道之曲率半徑/水力直徑)1左右的微混合器相較於較大曲率比的微混合器有較好的混合效果。(三)當橫向流動主導流體混合時,除了曲率比小於等於0.75的流道外,雷諾數越大,微混合器之出口混合度越高。(四) 曲率比越小,微混合器的壓降越大。比較CFDRC與混合式方法兩者的計算結果,在高流速區域,CFDRC會高估混合效果,而在低流速範圍,CFDRC與混合式方法兩者有一致的結果。

    In this work, we use commercial codes (CFDRC) to simulate the flow and mixing behaviors of pure water and water with Rhodamine in S-shaped micromixers with strong curvature. We investigate the effects of geometry and flow speed on the flow and mixing behaviors in the micromixers, especially those due to strong curvature. Besides, a hybrid method of the fluid particle tracking based on the velocity field preliminarily solved by the CFDRC and the mass diffusion calculated by a species equation for molecular diffusion is adopted to generate another numerical solution for comparison. The hybrid method may remedy the numerical diffusion of solution at high Schmidt number. The results of the CFDRC show the following trends. (i) Multi-vortices due to strong curvature and/or large Reynolds number stretch the interface between different fluids and so enhance fluid mixing. (ii) In general, the mixing performance of the micromixer with a curvature ratio (i.e., curvature radius/hydraulic diameter) around unity is better than that of the micromixer with a large curvature ratio. The preliminary comparisons of the results obtained by the CFDRC and those obtained by the hybrid method indicate following conclusion. For the high flow speed regime, the mixing performance of the micromixer is overestimated by the CFDRC. For the low flow speed regime, the estimations obtained by the CFDRC agree with the estimations obtained by the hybrid method.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 符號表 xxi 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 1 1-3研究動機 4 1-4本文架構 4 第二章 流道外形設計與數值模擬 5 2-1微混合器之幾何尺寸 5 2-2基本假設 6 2-3統御方程式、邊界條件與無因次化分析 6 2-3-1直角座標之統御方程式 7 2-3-2直角座標之邊界條件 8 2-3-3直角座標之無因次化 9 2-3-3-1直角座標之統御方程式的無因次化 9 2-3-3-2 直角座標之邊界條件的無因次化 10 2-3-4圓柱座標之統御方程式 11 2-3-5圓柱座標之邊界條件 11 2-3-6圓柱座標之無因次化 12 2-3-6-1圓柱座標之統御方程式的無因次化 12 2-3-6-2圓柱座標之邊界條件的無因次化 15 2-4數值模擬 16 2-4-1幾何形狀與網格建立 16 2-4-2模擬運算 17 2-4-3後處理 17 2-5混合度 17 2-6混合式方法 18 2-6-1流體顆粒之反向追跡 18 2-6-2目標截面之濃度擴散 20 第三章 結果與討論 23 3-1簡介 23 3-2網格測試 23 3-3混合式方法之模擬結果 24 3-4彎曲流道中多重渦流對混合之影響 25 3-5曲率比對彎曲流道中流體流動與混合的影響 27 3-6彎曲流道之曲率比、雷諾數與壓降的關係 34 第四章 結論與未來展望 35 4-1結論 35 4-2未來展望 35 參考文獻 36

    [1] A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical-analysis systems - a novel concept for chemical sensing,” Sensors and Actuators, B:Chemical, vol. 1, pp. 244-248, 1990.
    [2] K. S. Lok, Y. C. Kwok and N. T. Nguyen, “Passive micromixer for luminol-peroxide chemiluminescence detection,” Analyst, vol. 136, pp. 2586-2591, 2011.
    [3] Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu and H. Madeaa, “Interface configuration of the two layered laminar flow in a curved microchannel,” Chemical Engineering Journal, vol. 101, pp. 367-372, 2004.
    [4] V. Kumar, M. Aggarwal and K. D. P. Nigam, “Mixing in curved tubes,” Chemical Engineering Science, vol. 61, pp. 5742-5753, 2006.
    [5] A. Afzal and K. Y. Kim, “Passive split and recombination micromixer with convergent-divergent walls,” Chemical Engineering Journal, vol. 203, pp. 182-192, 2012.
    [6] R.-T. Tsai and C.-Y. Wu, “An efficient micromixer based on multidirectional vortices due to baffles and channel curvature,” Biomicrofluidics, vol. 5, pp. 014103.1-014103.13, 2011.
    [7] C.-Y. Wu and R.-T. Tsai, “Fluid mixing via multidirectional vortices in converging–diverging meandering microchannels with semi-elliptical side walls,” Chemical Engineering Journal, Vol. 217, pp. 320-328, 2013.
    [8] H. Fellouah, C. Castelain, A. O. El Moctar and H. Peerhossaini, “A criterion for detection of the onset of Dean instability in Newtonian fluids,” European Journal of Mechanics B-Fluids, vol. 25, pp. 505-531, 2006.
    [9] J. H. Chung and J. M. Hyun, “Convective heat-transfer in the developing flow region of a square duct with strong curvature,” International Journal of Heat and Mass Transfer, vol. 35, pp. 2537-2550, 1992.
    [10] H. Peerhossaini, C. Castelain and Y. Le Guer, “Heat-exchanger design based on chaotic advection,” Experimental Thermal and Fluid Science, vol. 7, pp. 333-344, 1993.
    [11] P. B. Howell, D. R. Mott, J. P. Golden and F. S. Ligler, “Design and evaluation
    of a Dean vortex-based micromixer,” Lab on a Chip, vol. 4, pp. 663-669, 2004.
    [12] F. Jiang, K. S. Drese, S. Hardt, M. Kupper and F. Schonfeld, “Helical flows and chaotic mixing in curved micro channels,” American Institute of Chemical Engineers Journal, vol. 50, pp. 2297-2305, 2004.
    [13] S. P. Vanka, G. Luo and C. M. Winkler, “Numerical study of scalar mixing in curved channels at low Reynolds numbers,” American Institute of Chemical Engineers Journal, vol. 50, pp. 2359-2368, 2004.
    [14] S. Litster, J. G. Pharoah and N. Djilali, “Convective mass transfer in helical pipes:effect of curvature and torsion,” Heat and Mass Transfer, vol. 42, pp. 387-397, 2006.
    [15] J. Xuan, M. K. H. Leung, D. Y. C. Leung and M. Ni, “Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream,” Chemical Engineering Journal, vol. 171, pp. 216-223, 2011.
    [16] M. Di Liberto and M. Ciofalo, “A study of turbulent heat transfer in curved pipes by numerical simulation,” International Journal of Heat and Mass Transfer, vol. 59, pp. 112-125, 2013.
    [17] M. Di Liberto, I. Di Piazza and M. Ciofalo, “Turbulence structure and budgets in curved pipes,” Computers and Fluids, vol. 88, pp. 452-472, 2013.
    [18] 張嘉元, “彎曲流道中剪切稀化流體之混合的數值研究,” 國立成功大學機械工程研究所碩士論文, 台南, 2013.
    [19] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, vol. 295, pp. 647-651, 2002.
    [20] A. Alam and K. Y. Kim, “Analysis of mixing in a curved microchannel with rectangular grooves,” Chemical Engineering Journal, vol. 181, pp. 708-716, 2012.
    [21] S. Dreher, M. Engler, N. Kockmann and P. Woias, “Theoretical and experimental investigations of convective micromixers and microreactors for chemical reactions,” in Micro and Macro Mixing, ed. H. Bockhorn, D. Mewes, W. Peukert and H.-J. Warnecke, Springer, Berlin, pp. 325-346, 2010.
    [22] A. Vikhansky, “Quantification of reactive mixing in laminar microflows,” Physics of Fluids, vol. 16, pp. 4738-4741, 2004.
    [23] T. Matsunaga, H. J. Lee and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shaped micromixer,” Lab on a Chip, vol. 13, pp. 1515-1521, 2013.
    [24] S. A. Rani, B. Pitts, P. S. Steward, “Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrobial Agents Chemotherapy, vol. 49, pp. 728-732, 2005.
    [25] J. Boss, “Evaluation of the homogeneity degree of a mixture,” Bulk Solids Handling, Vol. 6, pp. 1207-1215, 1986.

    下載圖示 校內:2016-09-01公開
    校外:2019-08-20公開
    QR CODE