| 研究生: |
黃奇鍊 Huang, Chi-Lian |
|---|---|
| 論文名稱: |
二氧化碳氣泡粒徑在水中衰減特性之實驗研究 Experimental study of size reduction of carbon dioxide bubble in water |
| 指導教授: |
黃清哲
Huang, Ching-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 氣泡粒徑 、影像法 、聲學法 、衰減 |
| 外文關鍵詞: | bubble size, photographic method, acoustic method, reduction |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨係以實驗方法探討二氧化碳氣泡衰減特性,藉由影像量測技術,以高速攝影機拍攝水中氣泡變化,進一步影像處理分析,可計算出氣泡之粒徑,同時利用水下麥克風收集氣泡噪音,經由快速傅立葉轉換分析後,由理論推導的氣泡大小。本實驗在成功大學水利及海洋工程學系光纖感測及聲學實驗室玻璃實驗水槽進行兩項實驗:實驗一為用針頭釋出二氧化碳單一氣泡,以影像法計算氣泡粒徑衰減程度;實驗二為用可變孔徑氣幕帶釋出氣泡幕,以影像及水下麥克風同步量測訊號,將結果加以比對探討。實驗結果發現,二氧化碳氣泡之粒徑在水中衰減程度除了從影像法得到明顯的衰減外,在溫度及壓力相近的環境下,氣泡粒徑衰減率會隨著氣泡粒徑越大衰減率則越小,甚至氣泡的衰減率會有負值之結果。另外,聲音訊號與影像資料經比對結果,在氣泡群中由於氣泡會互相撞擊、結合及分裂,所以無法在頻域圖中得到水中實際整體氣泡大小與數量。本研究以影像法及聲學法同時進行觀測,以影像來輔助聲學法判別氣泡大小,使其更具有說服力。本研究除了瞭解二氧化碳衰減特性,未來可以應用於軍事上船艦用氣幕帶之替代氣體等議題。
A series of images of bubbles were taken by a high-speed camera with the image process method to estimate the size reduction of carbon dioxide bubbles in water. An acoustic technique (passive method) with a hydrophone was simultaneously employed to measure the bubble signal spectrum by Fast Fourier Transform (FFT). Experiments were carried out in a glass water tank in the Department of Hydraulic and Ocean Engineering, NCKU. The first experiment is to release a single CO2 bubble with the needle at the bottom of the tank, and the reduction of the bubble size was measured with the photographic method during its rising process. In the second experiment, a bubble screen belt with the same orifice (0.3 mm in diameter) was used to generate the CO2 bubble cloud which was synchronously measured by both photographic and acoustic methods to estimate the bubble population. The result of the first experiment demonstrates that the CO2 bubble became to shrink when it rises to the water surface. This result is not agree with previous investigations to verify the carbon dioxide is soluble in the liquid. In addition, the acoustic method seems difficult to calculate the magnitude of bubble cloud since bubbles will crash coalesce, and divide when they rise to the water surface. However, the bubble signal spectrum measured by the acoustic method indicates the bubble sizes in the tank and they were also confirmed by the photographic method.
1.Blanchard, D. C. and A. H. Woodcock., "Bubble formation and modification in the sea and its meteorological significance." Tellus 9(2): 145-158 , 1957.
2.Deane, G. B., "Sound generation and air entrainment by breaking waves in the surf zone." The Journal of the Acoustical Society of America 102: 2671, 1997.
3.Epstein, P. and M. Plesset., "On the stability of gas bubbles in liquid‐gas solutions." The Journal of Chemical Physics 18: 1505 , 1950.
4.Glotov, V. P., Kolobaev, P. A., and Neuimin, G. G. "Investigation of scattering of sound by bubbles generated by an artificial wind in sea water and the statistical distribution of bubble sizes." Soviet Physics - Acoustics 7, 341-345 , 1962.
5.Gonzalez, R. C., and R. E. Woods, Digital image processing third edition, Prentice Hall: 954, 2008.
6.Hough, P. V. C., Method and means for recognizing complex patterns. US Patent No. 3069654, 1962.
7.Johnson, B. D, and R. C. Cooke., "Bubble populations and spectra in coastal waters: A photographic approach." J. Geophys. Res. 84(C7), 3761-3766 , 1979.
8.Kolaini, A. R., "Sound radiation by various types of laboratory breaking waves in fresh and salt water." The Journal of the Acoustical Society of America 103: 300, 1998.
9.Kolovayev, P., "Investigation of the concentration and statistical size distribution of wind produced bubbles in the near-surface ocean layer." Oceanology(15): 659-661, 1976.
10.Leighton, T., The acoustic bubble, Academic Press, New York, 368, 1997.
11.Leighton, T. G., "From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids." International Journal of Modern Physics B 18(25): 3267-3314, 2004.
12.Leighton, T. G., S. D. Meers, and White, P. R., "Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics." Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., vol.460, 2521-2550, 2004.
13.Leighton, T. G., D. G. Ramble, and A. D. Phelps., "Comparison of the abilities of multiple acoustic techniques for bubble detection." Proceedings of the Institute of Acoustics 17(8): 149-160, 1995.
14.Leighton, T. G. and A. J. Walton., "An experimental study of the sound emitted from gas bubbles in a liquid." European Journal of Physics 8(2): 98-104, 1987.
15.Maceiras, R., E. Álvarez, et al., "Experimental interfacial area measurements in a bubble column." Journal of Chemical Engineering 163(3): 331-336, (2010).
16.Medwin, H. and N. D. Breitz., "Ambient and transient bubble spectral densities in quiescent seas and under spilling breakers." Journal of Geophysical Research 94(C9): 12751-12759, 1989.
17.Medwin, H. and A. C. Daniel., "Acoustical measurements of bubble production by spilling breakers." Journal of the Acoustical Society of America 88(1), 408-412,1990.
18.Minnaert, M., "On musical air-bubbles and the sounds of running water." Philosophical Magazine Series 7 16(104): 235-248 , 1933.
19.Otsu, N., "A threshold selection method from gray-level histograms." Automatica 11: 285-296, 1975.
20.Parkinson, L., R. Sedev, D. Fornasiero and J. Ralston., "The terminal rise velocity of 10–100 μm diameter bubbles in water." Journal of Colloid and Interface Science 322(1), 168-172 , 2008 .
21.Plesset, M. S.,“The dynamics of cavitation bubbles,” ASME J. Appl. Mech., Vol. 16, pp. 228-231, 1949.
22.Stokes, M. and G. Deane., "A new optical instrument for the study of bubbles at high void fractions within breaking waves." Oceanic Engineering, IEEE Journal of 24(3): 300-311, 1999.
23.Sun, R. P. and T. Cubaud., "Dissolution of carbon dioxide bubbles and microfluidic multiphase flows." Lab on a Chip 11(17): 2924-2928, 2011.
24.Takemura, F. and J. Magnaudet., "The history force on a rapidly shrinking bubble rising at finite reynolds number." Physics of Fluids 16: 3247, 2004.
25.Tsuchiya, K., H. Mikasa, and S. Takayuki., "Absorption dynamics of CO2 bubbles in a pressurized liquid flowing downward and its simulation in seawater." Chemical Engineering Science 52(21-22): 4119-4126, 1997.
26.Urick, R. J. Principles of underwater sound. Los Altos, Peninsula Publishing, 1983.
27.李建勳,利用光纖感測器量測碎波氣泡體積分率之研究,國立成功大學水利及海洋工程研究所碩士論文,2007。
28.沈建成,氣泡振動阻尼機制之研究,國立成功大學水利及海洋工程研究所碩士論文,2002。
29.楊宇宏,解壓對二氧化碳氣泡於過飽和水溶液中之消長現象研究,國立清華大學動力機械工程學系碩士論文,2005。