簡易檢索 / 詳目顯示

研究生: 吳嘉宏
Wu, Chia-Hung
論文名稱: 使用攝影機圖像識別振動頻率
Frequency Identification of Vibration Signal Using Video Camera Image Data
指導教授: 鄭育能
Jeng, Yih-Nen
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 103
中文關鍵詞: 影像處理震動訊號取樣不足時頻分析
外文關鍵詞: Image Data Acquisition, Vibration Signal, Insufficient Frame Rate, Time Frequency Analysis
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一套影像擷取系統,透過高速攝影機或網路攝影機連接到個人電腦,準確的擷取主要的震動訊號。原灰階解析度0~255,藉由累加一個小區域的方式增強其解析能力,且在量測物體上貼一畫上黑色線條的白紙,以增強灰階對比。本研究亦使用發光二極體與震動機等兩個實驗,證明影像系統可以正確擷取振動頻率。
    光電荷轉換灰階過程中,由於有限的取樣頻率與非線性的現象,而造成訊號中有非物理的頻譜混疊情形。本研究發使用一個簡單的模擬,準確的預測出錯誤的模組,且試著使用幾個方式降低錯誤模組,但無法將其完全排除。文中並運用兩個例子描述,當取樣的臨界頻率小於主要頻率時,其頻譜折疊後的情況。
    最後,透過實際量測物體之實驗結果顯示,使用非接觸影像收集低頻訊號是可行的工具。

    This study develops an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) for precisely capturing most dominant modes of vibration signal. The motion of the target and camera, the vibration of the camera, and the variation of the light intensity illuminating the target surface are fixed to simplify the factors affecting the image data. Then many difficulties embedded to the system are overcome by the corresponding strategies. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. In addition to provide an light source using a car lamp, the image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. The extracted signal may involve the non-physical aliasing modes together with the false harmonics induced by the finite frame rate and non-linear relation for converting the photo-charge of a pixel to the gray level. Using a simple model, frequencies of all the prominent false modes are properly predicted and can then be manually excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

    摘要 I 第一章 緒論 III 第二章 理論分析 V 第三章 結果與討論 VII 第四章 結論與建議 IX Abstract XI 致謝 XIII CONTENTS XV LIST OF TABLES XVII LIST OF FIGURES XVIII NOMENCLATURE XXI CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Literature Survey 7 1.2.1 Video Camera 8 1.2.2 Tools of Data Analysis 13 1.2.3 Objective 13 CHAPTER II THEORETICAL DEVELOPMENTS 15 2.1 Image Data Properties 15 2.1.1 Resolution of Image Data and Enhancements 15 2.1.2 Photo-Charge Accumulation 19 2.1.3 Photo-Charge to Gray-Level Conversion 20 2.1.4 Aliasing Mode Relation 26 2.1.5 Implementation of the Image Signal via Video Camera 27 2.2 Tools of Data Analysis 28 2.2.1 Iterative Filters using Gaussian Smoothing 28 2.2.2 Fourier Sine Spectrum 32 2.2.3 Approximated Gabor Wavelet Transform 34 2.2.4 Hilbert Transform 38 CHAPTER III RESULTS AND DISCUSSIONS 46 3.1 Calibrations and Code Validation 46 3.2 Identifications of Non-Physical Aliased Modes and Harmonics 54 3.3 Suppression of Non-Physical Aliasing Modes by Varying Physical Conditions 60 3.4 Applications for Several Practical Engineering Problems 60 3.4.1 Operation Test of a Remote Control Electronic Helicopter 60 3.4.2 Arterial Pressure Data of Human Being 63 3.5 Short Summary 67 CHAPTER IV CONCLUDING REMARKS 95 4.1 Conclusions 95 4.2 Recommendation and Future Works 97 REFERENCES 99 PUBLICATION LIST 102 VITA 103

    1. Jeng, Y.N., T.M. Yang, and S.Y. Lee, Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone. Sensors, 2011. 11(1): p. 623-637.
    2. Chang, R.S., et al., A Parkinson’s disease measurement system using laser lines and a CMOS image sensor. Sensors, 2011. 11(2): p. 1461-1475.
    3. Wu, J.H., R.S. Chang, and J.A. Jiang, A novel pulse measurement system by using laser triangulation and a CMOS image sensor. Sensors, 2007. 7(12): p. 3366-3385.
    4. Bendat, J.S. and A.G. Piersol, Random data: analysis and measurement procedures. Vol. 729. 2011: Wiley.
    5. Sims, J.R., A.N. Durney, and C.C. Smith, Design of mechatronic systems with aliased plant modes. Mechatronics, IEEE/ASME Transactions on, 1998. 3(2): p. 144-149.
    6. Hild, F. and S. Roux, Digital image correlation: from displacement measurement to identification of elastic properties–a review. Strain, 2006. 42(2): p. 69-80.
    7. Shin, J. and S.Y. Yi, Development of an Active Ranging System Based on Structured Light Image for Mobile Robot Application. Grid and Distributed Computing, 2011: p. 49-58.
    8. Sonka, M., V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. 1999.
    9. Jeng, Y.N., et al., Low Frequency Vibration Data Analysis via Digital Image Data of High Speed Camera, in Proceedings of the 48th AIAA Aerospace Sciences Meeting: Orlando, FL, USA.
    10. Jeng, Y.N., C.H. Wu, and T.M. Yang, Vibration Analysis of Small Unmanned Aircrafts via Image Data, in Proceedings of the 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference2010: Chicago, IL, USA.
    11. Jeng, Y.N., T.M. Yang, and C.H. Wu, Low Frequency Analysis of Acoustic and Vibration Data of a Remote Control Electronic Helicopter, in Proceedings of the 47th AIAA Aerospace Sciences Meeting2009: Orlando, FL, USA.
    12. Janesick, J.R., Scientific charge-coupled devices. Vol. 117. 2001: SPIE press Bellingham, WA.
    13. Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: Wiley. com.
    14. Zimmermann, H., Integrated silicon optoelectronics. Vol. 148. 2009: Springer.
    15. Campos, F.S., et al., A multisampling time-domain CMOS imager with synchronous readout circuit. Analog Integrated Circuits and Signal Processing, 2008. 57(1): p. 151-159.
    16. Faramarzpour, N., et al., CMOS-based active pixel for low-light-level detection: analysis and measurements. Electron Devices, IEEE Transactions on, 2007. 54(12): p. 3229-3237.
    17. Lai, C.H., Y.C. King, and S.Y. Huang, A 1.2-V 0.25-μm clock output pixel architecture with wide dynamic range and self-offset cancellation. Sensors Journal, IEEE, 2006. 6(2): p. 398-405.
    18. Bigas, M., et al., Review of CMOS image sensors. Microelectronics journal, 2006. 37(5): p. 433-451.
    19. Pain, B., et al., An enhanced-performance CMOS imager with a flushed-reset photodiode pixel. Electron Devices, IEEE Transactions on, 2003. 50(1): p. 48-56.
    20. El-Desouki, M., et al., CMOS image sensors for high speed applications. Sensors, 2009. 9(1): p. 430-444.
    21. Razavi, B., Design of analog CMOS integrated circuits. 2001.
    22. Brigham, E.O., The Fast Fourier Transform and its applications. 1988.
    23. Carmona, R., W.L. Hwang, and B. Torresani, Practical Time-Frequency Analysis: Gabor and Wavelet Transforms, with an Implementation in S. Vol. 9. 1998: Academic Press.
    24. Chan, A.K. and J. Goswami, Fundamentals of Wavelets: Theory, Algorithms, and Applications. 2011: John Wiley & Sons.
    25. Mallat, S., A wavelet tour of signal processing. 1999: Academic press.
    26. Von Groll, G. and D.J. Ewins. On the dynamics of windmilling in aero-engines. in IMechE Conference Transactions. 2000. Professional Engineering Publishing; 1998.
    27. von Groll, G. and D.J. Ewins, A mechanism of low subharmonic response in rotor/stator contact-measurements and simulations. Journal of vibration and acoustics, 2002. 124(3): p. 350-358.
    28. Jeng, Y.N., P. Huang, and Y.C. Cheng, Decomposition of one-dimensional waveform using iterative Gaussian diffusive filtering methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2008. 464(2095): p. 1673-1695.
    29. Jeng, Y.N. and T.M. Yang, Monitor of Remote Control Vehicle via Approximate Gabor Transform of Acoustic Signatures. Journal of aircraft, 2012. 49(1): p. 37-51.
    30. Jeng, Y.N., T.M. Yang, and Y.C. Cheng, A class of fast and accurate deterministic trend decomposition in the spectral domain using simple and sharp diffusive filters. Journal of the Franklin Institute, 2012.
    31. Bertocci, U., et al., Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies Maximum Entropy Method or Fast Fourier Transform? Journal of The Electrochemical Society, 1998. 145(8): p. 2780-2786.
    32. Denholm-Price, J. and J. Rees, A practical example of low-frequency trend removal. Boundary-Layer Meteorology, 1998. 86(1): p. 181-187.
    33. Boashash, B., Time frequency signal analysis and processing: a comprehensive reference. 2003: Elsevier Science Limited.
    34. Fukuda, M., Optical semiconductor devices. Vol. 46. 1998: Wiley-interscience.
    35. Neamen, D.A. and B. Pevzner, Semiconductor physics and devices: basic principles. 1992: Irwin.
    36. Jeffrey, A. and D. Zwillinger, Table of integrals, series, and products. 2007: Access Online via Elsevier.
    37. Huynh, H.T., Accurate monotone cubic interpolation. SIAM journal on numerical analysis, 1993. 30(1): p. 57-100.
    38. Palm, W.J., Matlab for engineering applications. 2011: McGraw-Hill.

    下載圖示 校內:2014-08-07公開
    校外:2016-08-07公開
    QR CODE