簡易檢索 / 詳目顯示

研究生: 王宏嘉
Wang, Hung-Chia
論文名稱: 浮式風機拖帶系統在風浪中運動之模擬研究
Study on the Motion Simulations of Floating Offshore Wind Turbine Towing System at Sea
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 拖帶系統浮動式風機拖纜船體運動PD控制數值模擬航向穩定性
外文關鍵詞: Towing System, Floating Offshore Wind Turbine, Course Stability, Mathematical Simulation, Tugboat Operation
相關次數: 點閱:52下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為了評估海上浮動式風機拖帶作業系統的穩定性及安全性,本文發展出一套結合拖船、拖纜及浮式風機耦合拖帶運動數值模擬分析工具,文中利用一套結合耐海性與操縱性的非線性六度運動數學模式,並透過四階Runge-Kutta數值方法來模擬計算船隻在海上執行拖帶作業時的時程領域運動反應。
    然而,作為一個高層結構,浮式風機在進行拖帶任務時,在風、浪、流的影響之下可能會引起較大的傾覆力矩,而拖纜張力在拖帶過程中也對浮式風機的穩定性產生一定的影響,在各種力及力矩的作用下,船隻航行的航向穩定性與靜水中相差甚遠,因此,在文中加入了輔助拖船的想法,利用PD控制器來模擬控制拖船之角度,藉由拖曳角度的改變而產生不同的分力作用於浮式風機平台上,改善在進行拖帶任務時浮式風機因海況而產生的運動反應,並且達到航向之控制。
    本文考慮在風浪中包含規則波與不規則波,以不同波向並且加入各種環境負載的情況下,探討拖帶速度、有無輔助拖船等要素對拖帶系統航向穩定性的影響以及對浮式風機的運動狀態進行分析,以了解這些條件對於整個拖帶系統的影響。將上述各種計算環境負載的數學模型,集合成一套多船船體運動數值模擬分析工具。利用此工具之模擬分析結果,為浮式風機拖帶作業提供了初步的安全性評估。

    This study aims to assess the stability and safety of an offshore floating wind turbine towing operation. The paper presents a numerical simulation analysis tool that combines a tugboat, towing cable, and the dynamics of a floating wind turbine during towing. The study utilizes a nonlinear six-degree-of-freedom mathematical model, which integrates both seakeeping and maneuvering characteristics. The vessel's towing motion response during the towing operation is simulated and computed using a fourth-order Runge-Kutta numerical method.

    However, as a high-level structure, the floating wind turbine may experience significant overturning moments under the influence of wind, waves, and currents during the towing operation. The tension in the towing cable also affects the stability of the floating wind turbine during towing. Under various forces and moments, the vessel's course stability differs significantly from the static conditions in calm water. Therefore, the idea of incorporating an auxiliary tugboat with a PD controller to control the tugboat's angle is introduced in the paper. By adjusting the towing angle, different forces are generated on the floating wind turbine platform, improving the motion response of the floating wind turbine under varying sea conditions.

    The study considers regular and irregular waves, as well as different wave directions and various environmental loads, to investigate the influence of towing speed and the presence of an auxiliary tugboat on the towing system's course stability and the motion of the floating wind turbine. These mathematical models for various environmental loads are integrated into a multi-vessel motion numerical simulation analysis tool. The goal is to provide a preliminary safety assessment for the floating wind turbine towing operation by the simulation results obtained with this tool.

    摘要 I Abstract II 致謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號說明 XXI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 本文架構 3 第二章 數學模型 4 2.1 座標系統 4 2.2 運動方程式 5 2.3 流體動力(HF) 7 2.4 入射波力(FK) 9 2.5 繞射力(DF) 11 2.6 舵力(RF)與自動操舵系統 12 2.7 風力(WF) 13 2.8 波浪漂流力(WV) 13 2.9 拖纜張力(TL) 14 2.10 頂推力(TF)與自動頂推角控制系統 15 2.11 瞬時定傾高度 16 2.12 不規則波 17 2.12.1 長峰波 17 2.12.2 短峰波 17 第三章 浮式風機拖帶系統模擬及環境條件 19 3.1 計算船型 19 3.2 拖纜之選定 22 3.3 PD控制器參數設定 22 3.4 海況設定 23 第四章 結果與討論 24 4.1 規則波下定向模擬結果 24 4.1.1 波向與船速對系統之影響(無輔助拖船頂船的狀況) 25 4.1.2 規則波下輔助拖船對系統之影響 37 4.2 實際海況下定向模擬結果 48 4.2.1 長峰波下模擬結果與分析 48 4.2.2 短峰波下模擬結果與分析 59 第五章 結論與未來展望 70 參考文獻 72 附件A:非線性操縱性導數 74

    1. Adam, F., Steinke, C., Dahlhaus, F., and Großmann, J., “GICON®-TLP for wind turbines–validation of calculated results,” in The Twenty-Third International Offshore and Polar Engineering Conference, 2013.
    2. DNV, “DNV-RP-H103 Modelling and Analysis of Marine Operations”, pp.108, 2011
    3. Ding, H.Y., Han, Y.Q., Le, C.H., and Zhang, P.Y., “Dynamic analysis of a floating wind turbine in wet tows based on multi-body dynamics”, Journal of Renewable and Sustainable Energy, Vol. 9, 2017
    4. Gronarz, A., “The Influence of Inhomogeneous Current on the Ships Motion”, International Conference on Marine Simulation and Ship Manoeuvrability, pp. M33-M39, 2009.
    5. Hamamoto, M. and Kim, Y.S., “A new coordinate system and the equations describing maneuvering motion of a ship in waves (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 209-220, 1993.
    6. Hamamoto, M., Matsuda, A., and Ise, Y., “Ship motion and the dangerous zone of a ship in severe following seas (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 175, pp. 69-78, 1994.
    7. Hirano, M., “On the calculation method of ship maneuvering motion at initial design phase (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 147, pp. 144-153, 1980.
    8. Hirano, M. and Takashina J., “A calculation of ship turning motion taking coupling effect due to heel into consideration,” Transaction of the West-Japan Society of Naval Architects, Vol. 59, pp. 71-81, 1980.
    9. Hirano, M. and Takashina J., “Ship Turning Trajectory in Regular Waves,” Transaction of the West-Japan Society of Naval Architects, Vol. 60, 1980.
    10. Inoue, K., etc., “The Course Stability of Towed Boats,” Transaction of the West-Japan Society of Naval Architects, Vol. 42, pp. 11-25, 1971.
    11. Inoue, S., Hirano, M. and Kijima, K.,“Hydrodynamic derivatives on ship manoeuvring”, International Shipbuilding Progress, Vol. 28, pp. 112-125, 1981.
    12. Inoue, S., Hirano, M., Kijima, K., and Takashina, J., “A practical calculation method of ship maneuvering motion”, International Shipbuilding Progress, Vol. 28, pp. 207-222, 1981.
    13. Isherwood, R.M., “Wind Resistance of Merchant Ships, ”Transactions of RINA, Vol. 115, pp. 327-338, 1973.
    14. Jonkman, J.M.,  and Buhl, Jr., M.L., “FAST User's Guide”, NREL, Golden, CO, 2005.
    15. Jonkman, J.M., “Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine”, NREL, Golden, CO, 2007.
    16. Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development”, NREL, Golden, CO, 2009.
    17. Le, C.H., Ren, J.Y., Wang, K., Zhang, P.Y., and Ding, H.Y., “Towing Performance of the Submerged Floating Offshore Wind Turbine under Different Wave Conditions”, Journal of Marine Science and Engineering, Vol. 9, 2021.
    18. Yoshimura, Y. and Nomoto, K., “Modeling of manoeuvring behavior of ships with a propeller idling, boosting and reversing (in Japanese)”, Journal of the Society of Naval Architects of Japan, Vol. 144, pp. 57-69, 1978.
    19. 關西造船協會,造船設計便覽(日文),海文堂出版株式會社,東京,1983。
    20. 高品純志,港灣域における船の操縱運動計算法に關する研究(日文),博士論文,東京大學,日本,1992。
    21. 徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機械工程研究所碩士論文,民國八十六年。
    22. 羅志宏,船隻在順波中航向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
    23. 羅志宏,船舶在波浪中之非線性運動操控模式之探討,國立成功大學系統及船舶機電工程研究所博士論文,民國九十五年。
    24. 朱俊翰,國立成功大學系統及船舶機電工程研究所碩士論文,波浪中船舶拖帶系統之模擬研究,民國九十六年。
    25. 高怡倩,國立成功大學系統及船舶機電工程研究所碩士論文,類神經網路於波浪中拖船系統最佳化控制之應用,民國九十八年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE