研究生: |
陳冠誠 Chen, Guan-Cheng |
---|---|
論文名稱: |
聚矽氧烷/二氧化鈦奈米複合材料在石質文物保存與抗汙特性之研究 Effect of Polysiloxane/TiO2 Nanocomposite Coating for Anti-polluting and Anti-weathering of Stone Heritage |
指導教授: |
方冠榮
Fung, Kuan-Zong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 商用加固劑(WACKER OH100) 、奈米二氧化鈦 、聚矽氧烷/二氧化鈦奈米複合材料 、耐候測試 、亞甲基藍 |
外文關鍵詞: | WACKER OH100(commercial silicate consolidant), TiO2 nanoparticles, Polysiloxane/TiO2 composite coating, Weathering test, Methylene blue |
相關次數: | 點閱:113 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣的石質文物大多長期暴露在戶外環境,使得石材時常受到物理和化學風化而導致損壞。為了保護戶外的石質文物,現階段最常使用矽酸型加固劑(主要成分是四乙氧基矽氧烷)在戶外的石材上,優點在於施作後所造成的色彩變化小,並展現疏水性和提高整體機械強度等效果。由於全球工業的迅速發展,使得汽機車以及工廠所排放的廢氣量上升,進而造成酸雨和懸浮微粒的問題日益嚴重。酸雨會加速石材的溶解現象,使得石材表面受到破壞;懸浮微粒容易隨著雨水附著在石材表面造成外觀上的影響,因此應用具有疏水性的保護層在戶外石質文物上來杜絕上述的問題是必要的,而本研究主要目標是通過開發聚矽氧烷/二氧化鈦奈米複合材料和自製矽酸型加固劑與商用加固劑(WACKER OH100)進行物理與化學性質的探討。本研究探討自製矽酸型加固劑的合成並透過官能基的檢測,觀察加固劑經過水解、縮合後的成膜性。此外,透過水熱法合成的奈米二氧化鈦或表面修飾的奈米二氧化鈦混入矽酸型加固劑所形成的聚矽氧烷/二氧化鈦奈米複合材料,並透過傅里葉轉換紅外光譜(FTIR)對官能基的檢測與X-射線光電子光譜(ESCA)對化學鍵結的檢測,可得知表面修飾的奈米二氧化鈦與矽酸型加固劑所形成的聚矽氧烷/表面修飾二氧化鈦奈米複合材料存在著Si-O-Ti化學鍵結,而此奈米複合材料在應用石材表面(花崗岩)後,能提供良好的疏水效果(150.3o),且擁有很好的耐候特性,使得石材(花崗岩)經過耐候測試後仍然維持著疏水效果(145.5o)、表面形貌和表面粗糙度的完整性。
Most of stone heritage placed in outdoor environment for long time resulting in stone deterioration by physical and chemical weathering. In order to protect stone heritage in outdoor environment, using silicate consolidant (mainly composed of TEOS) was common method. Outdoor stone treated with silicate consolidant which provided aesthetical compatibility and strengthened structure of stone. However, rapid development of industries caused the amount of exhaust gas emitted increased resulting in the problems of acid rain and particulate matter. Acid rain would accelerate the dissolution of the stone resulting in stone deterioration; the particulate matter mixed rain which attached to stone surface resulting in color change on appearance of outdoor stone, therefore, it is necessary to apply protective layer with hydrophobicity to outdoor stone. The objective of this study was improved anti-polluting and anti-weathering performance of outdoor stone(granite) through Polysiloxane/TiO2 nanocomposite coating. This research investigated physical and chemical properties of nanocomposite coatings, synthesized silicate consolidant and commercial silicate consolidant (WACKER OH100), where nanocomposite coatings are TiO2 nanoparticles or modified TiO2 nanoparticls mixed with synthesized silicate consolidant (polysiloxane).
In this study, the formation of xerogel from silicate consolidant during hydrolysis and condensation reaction was detected by functional groups using Fourier transform infrared spectroscopy (FTIR). In addition, TiO2 nanoparticles or modified TiO2 nanopartilces mixed silicate consolidant to form polysiloxane/TiO2 nanocomposite coating and polysiloxane/modified TiO2 nanocomposite coating, which the functional group was detected by FTIR and the detection of chemical bonding(Si-O-Ti) by X-ray photoelectron spectroscopy (ESCA), while modified TiO2 nanoparticles mixed silicate consolidant showed chemical bonding (Si-O-Ti) in the nanocomposite coating, which applied to stone(granite) surface could provide super-hydrophobicity (150.3o), and had great anti-weathering performance, so that the stone(granite) surface still maintained hydrophobicity (145.5o) after weathering test.
[中文參考文獻]
1.國立臺南藝術大學, 臺南市清乾隆漢滿文御碑加固及預防性保存計畫. 2015.
2.李盛沐, 台灣古蹟磚、石質材料風化及其防護材料破壞之研究, in 建築系. 2005, 國立臺灣科技大學: 台北市. p. 247.
6.魏稽生, 台灣常見石材的風化與防護. 文物保存維護研討會論文集, 1996.
7.奚三彩, 文物保護技術與材料. 1999: 國立臺南藝術學院教務處出版組.
8.黃克忠, 岩土文物建築的保護. 中國建築工學出版社, 2000.
9.王壽來、李麗芳、鄭明水、蔡育林、邵慶旺、周志明、陳俊宇, 卑南遺址月形石柱保存修復研究案. 行政院文化建設委會文化資產總管理處, 2008.
10.方冠榮、邵慶旺, 石質文物常用加固劑材料分析與研究. 文化部文化資產局, 2016.
30.方冠榮、邵慶旺, 以奈米技術提升石質文物抗污性質之初期研究. 2018.
[英文參考文獻]
3.Miliani, C., M.L. Velo-Simpson, and G.W. Scherer, Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. Journal of Cultural Heritage, 2007. 8(1): p. 1-6.
4.Korat, L., et al., Formulation and microstructural evaluation of tuff repair mortar. Journal of Cultural Heritage, 2015. 16(5): p. 705-711.
5.Pedna, A., et al., Synthesis of functionalized polyolefins with novel applications as protective coatings for stone Cultural Heritage. Progress in Organic Coatings, 2013. 76(11): p. 1600-1607.
11.A. R. Warnes, B.S., Their Properties, Decay, and Preservation (Ernest Benn Ltd., London, 1926).
12.Torraca, G.B., adobe, stone and architectural ceramics: Deterioration processes and conservation practices. In Preservation and Conservation: Principles and Practices, ed. S. Timmons, 143-65. Washington, D.C.: Preservation Press, 1976.
13.Lehmann, J., Damage by accumulation of soluble salts in stonework. Studies in Conservation, 1971. 16(sup1): p. 35-45.
14.Penkala, B., The Influence of Surface Protecting Agents on the Technical Properties of Stone. Ochrona Zabytrow, 1964. Vol 17 (No. 1): p. pp. 37-43.
15.L. E. Kukacha, A.A., P. Colombo, J. Fontana, and M. Steinberg, Introduction to Concrete-Polymer Materials, Brookhaven National Laboratory; Available from National Technical Information Service, No. PB 241-691.
16.Price, C.A., Stone Decay and Preservation. Chemistry in Britain, 1975. Vol. 11 (No. 9), : p. pp. 350-353
17.L. E. Kukacka, e.a., Concrete-Polymer Materials. Brookhaven National Laboratory Report, 1973.
18.Chen, E.D.-J.a.W.F., Stress-Strain Properties of Polymer Modified Concrete. Fritz Engineering Laboratory, 1973.
19.Preserving Building Stone, B.N., Vol. 42, pp. 10-11 (Winter, 1977).
20.Marschner, H., Application of Salt Crystallization Test to Impregnated Stones. Research in Archaeology and Conservation, 1979: p. p.70-77.
21.Klemm, R.S.a.D.D., Scanning Electron Microscope Investigations on Impregnated Sandstones. International Symposium: Deterioration and Protection of Stone Monuments, 1978. vol. 2, no. 5.7.
22.Price, C.A. and E. Doehne, Stone conservation: an overview of current research. 2011: Getty publications.
23.Ginell, W., D. Wessel, and C. Searles, ASTM E2167–01 standard guide for selection and use of stone consolidants. West Conshohocken, PA: ASTM International, 2001.
24.Clifton JR, F.G.S.-c.m.a.s.r.I.C., C.o.C.o.H.S.B.a.M.N.M. of historic stone buildings and monuments report, and p. 287–311.
25.Foulks, W.G., Historic Building Façades: the manual for maintenance and rehabilitation. 1997: John Wiley & Sons.
26.Elfving, P. and U. Jäglid, Silane bonding to various mineral surfaces. 1992.
27.Abdellah, M.Y., A. Gelany, and M.M.A. Zeid, Compressive and Failure Strength of Sand Stone with Different Strengthen Materials. American Journal of Materials Engineering and Technology, 2014. 2(3): p. 43-47.
28.Al-Dosari, M.A., et al., Effects of adding Nanosilica on performance of Ethylsilicat (TEOS) as consolidation and protection materials for highly porous artistic stone. Journal of Materials Science and Engineering A, 2016. 6(7-8): p. 192-204.
29.Son, S., et al., Organic− inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS applied materials & interfaces, 2009. 1(2): p. 393-401.
31.Sil, A., et al., A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2+ from Zn2+ with high sensitivity and selectivity. Sensors and Actuators B: Chemical, 2016. 226: p. 403-411.
32.Fujishima, A., X. Zhang, and D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surface science reports, 2008. 63(12): p. 515-582.
33.Hashimoto, K., H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 2005. 44(12R): p. 8269.
34.Fujishima, A. and X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 2006. 9(5-6): p. 750-760.
35.Fujishima, A., T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 2000. 1(1): p. 1-21.
36.Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry, 2004. 32(1-2): p. 33-177.
37.Hendrix, Y., et al., Titania-silica composites: a review on the photocatalytic activity and synthesis methods. World, 2015. 5: p. 161-177.
38.Nam, Y., et al., Photocatalytic activities of TiO2 nanoparticles: A theoretical aspect. Journal of Materials Chemistry A, 2019.
39.Peng, F., et al., Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity. Materials, 2017. 10(2): p. 209.
40.Nosaka, Y. and A.Y. Nosaka, Reconsideration of intrinsic band alignments within anatase and rutile TiO2. 2016, ACS Publications.
41.Xu, F., et al., TEOS/HDTMS inorganic–organic hybrid compound used for stone protection. Journal of sol-gel science and technology, 2012. 61(2): p. 429-435.
42.D’Amato, R., et al., Development of nanocomposites for conservation of artistic stones. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014. 228(1): p. 19-26.
43.Cai, Y., et al., Product and Process Fingerprint for Nanosecond Pulsed Laser Ablated Superhydrophobic Surface. Micromachines, 2019. 10(3): p. 177.
44.Hosseini, M. and I. Karapanagiotis, Advanced Materials for the Conservation of Stone. 2018: Springer.
45.Scherer, G.W., Recent progress in drying of gels. Journal of non-crystalline solids, 1992. 147: p. 363-374.
46.Kim, E.K., et al., Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. Journal of Cultural Heritage, 2009. 10(2): p. 214-221.
47.Chen, W., et al., Sol–gel preparation of thick titania coatings aided by organic binder materials. Sensors and Actuators B: Chemical, 2004. 100(1-2): p. 195-199.
48.Salazar‐Hernández, C., et al., TEOS–colloidal silica–PDMS‐OH hybrid formulation used for stone consolidation. Applied Organometallic Chemistry, 2010. 24(6): p. 481-488.
49.Illescas, J.F. and M.J. Mosquera, Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. The Journal of Physical Chemistry C, 2011. 115(30): p. 14624-14634.
50.Gherardi, F., et al., Layered Nano‐TiO2 Based Treatments for the Maintenance of Natural Stones in Historical Architecture. Angewandte Chemie International Edition, 2018. 57(25): p. 7360-7363.
51.Crupi, V., et al., TiO2–SiO2–PDMS nanocomposite coating with self-cleaning effect for stone material: Finding the optimal amount of TiO2. Construction and Building Materials, 2018. 166: p. 464-471.
52.Truppi, A., et al., Photocatalytic Activity of TiO2/AuNRs–SiO2 Nanocomposites Applied to Building Materials. Coatings, 2018. 8(9): p. 296.
53.Remzova, M., et al., Modified Ethylsilicates as Efficient Innovative Consolidants for Sedimentary Rock. Coatings, 2019. 9(1): p. 6.
54.Behnajady, M., et al., Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination, 2011. 278(1-3): p. 10-17.
55.Scherer, G.W., Theory of drying. Journal of the American Ceramic Society, 1990. 73(1): p. 3-14.
56.Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
57.Wheeler, G. and E.S. Goins, Alkoxysilanes and the Consolidation of Stone. 2005: Getty Publications.
58.Jones, R.G., W. Ando, and J. Chojnowski, Silicon-containing polymers: the science and technology of their synthesis and applications. 2013: Springer Science & Business Media.
59.Peruchon, L., et al., Characterization of self-cleaning glasses using Langmuir–Blodgett technique to control thickness of stearic acid multilayers: importance of spectral emission to define standard test. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 197(2-3): p. 170-176.
60.Koretsky, C.M., et al., Detection of surface hydroxyl species on quartz, γ-alumina, and feldspars using diffuse reflectance infrared spectroscopy. Geochimica et Cosmochimica Acta, 1997. 61(11): p. 2193-2210.
61.Su, R., et al., How the anatase-to-rutile ratio influences the photoreactivity of TiO2. The journal of physical chemistry C, 2011. 115(49): p. 24287-24292.
62.Praveen, P., et al., Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 117: p. 622-629.
63.Haque, F.Z., R. Nandanwar, and P. Singh, Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik, 2017. 128: p. 191-200.
64.Antcliff, K.L., et al., The interaction of H 2 O 2 with exchanged titanium oxide systems (TS-1, TiO 2,[Ti]-APO-5, Ti-ZSM-5). Physical Chemistry Chemical Physics, 2003. 5(19): p. 4306-4316.
65.Hiroki, A. and J.A. LaVerne, Decomposition of hydrogen peroxide at water− ceramic oxide interfaces. The Journal of Physical Chemistry B, 2005. 109(8): p. 3364-3370.
66.Xie, C., et al., Enhanced photocatalytic activity of titania–silica mixed oxide prepared via basic hydrolyzation. Materials Science and Engineering: B, 2004. 112(1): p. 34-41.
67.Rasalingam, S., et al., Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catalysis communications, 2013. 31: p. 66-70.