| 研究生: |
何侑昌 He, Yu-Chang |
|---|---|
| 論文名稱: |
於馬赫真德干涉儀使用互補式空間光調變器量測相位/強度與待測物量測解析度提升 On Image Objects Phase/Amplitude Measurements and Resolution Enhancement Using Conjugated-Spatial Light Modulator in Mach-Zehnder Interferometer |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 馬式干涉儀 、空間光調變器 、頻譜儀 、電荷耦合元件 |
| 外文關鍵詞: | Mach-Zehnder interferometer (MZI), spatial light modulators (SLMs), spectrometer, charge coupled devices (CCDs) |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
馬式干涉儀被用來使光干涉,並且獲得光的參數特性。我們可以安裝光學裝置於
馬式干涉儀而且適當的安排光學裝置,可以進行很多應用。在這篇論文中,我們做了兩個應用。一個是訊號臂的光之強度與相位的量測,另一個是利用空間光調變器,來使待測物樣品量測的解析度提升。
在第一個應用中,我們利用空間光調變器,和線性偏極化器來量測馬式干涉儀中訊號臂光的強度與相位。我們把它分成兩種情況討論,一個是訊號臂上待測裝置的轉移函數為常數,另一個則是訊號臂上待測裝置的轉移函數不是常數。假如是第一種情況,我們使用比較簡單的架構,而且利用空間光調變器來量測相位。然而,如果是另一種情況的話,我們使用較複雜的架構並且安排線性偏極化器來量測相位與強度。我們也結合了頻譜儀,電荷耦合元件與電腦來計算相位與強度。
在第二個應用中,我們提升樣品待測物的解析度。藉由觀察兩臂之干涉情形,我們發現安裝空間光調變器的架構可以更簡單地偵測待測物是否有病症與腫瘤。假如我們可以完全地把它與影像處理作結合,那麼它就可以被廣泛的使用在醫界。此外,它也可以被使用在工業界,來量測樣品的一些性質。
Mach-Zehnder interferometer is used to make lights interference and acquire the parameter characteristic of lights. We can equip optical device with Mach-Zehnder interferometer and arrange these optical device appropriately to do many applications. In the thesis, we present two applications. One is the measurement of the amplitude and phase of the light of a signal arm. The other is the resolution enhancement of object samples utilizing spatial light modulators.
In the first application, we utilize spatial light modulators and linear polarizers to measure the amplitude and phase of the light of a signal arm in Mach-Zehnder interferometer. We classify two cases: one is the transfer function of device under test in signal arms being a constant, and the other is the transfer function of device under test not a constant. If it is the first case, we use simpler scheme and utilize spatial light modulators to realize the phase measurement. However, if it is the other case, we use more complicated scheme and arrange linear polarizers to measure the phase and amplitude. We also combine spectrometer and charge coupled device with computers to compute the phase and amplitude.
In the second application, we enhance the resolution of object samples. By observing interference properties, we find that the scheme equipped with spatial light modulators can detect sick signs or tumor in object samples easier. If we can totally merge it into image signal processing, it could be widely used in medical field. Additionally, it also could be used in industrial field to detect some quantity.
[1] Wolfgang Demtröder, “Laser Spectroscopy, 4th ed. Vol. 1: Basic Principles”, Springer-Verlag, Berlin (2008).
[2] A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators”, Review of scientific instruments, Vol. 71, pp. 1929-1960 (2000).
[3] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “ Progammable femtosecond pulse shaping by use of a multi-element liquid-crystal phase modulator”, Opt. Lett., Vol. 15, pp. 326-328 (1990).
[4] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “ Progammable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator”,IEEE J. Quantum Electron., Vol 28, pp. 908-920 (1992).
[5] C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses using a dispersion-compensating fiber and a programmable pulse shaper ”, Opt. Lett., Vol. 23, pp. 283-285 (1998).
[6] M. C. Wefers and K. A. Nelson, “Programmable Phase and amplitude femtosecond pulse shaping”, Opt. Lett., Vol. 18, pp. 2032-2034 (1993).
[7] M. M. Wefers and K. A. Nelson, “Optical coherence tomography”, Opt. Lett., Vol. 20, pp. 1047-1049 (1995).
[8] C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, “Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator”, Opt. Lett., Vol. 23, pp. 709-711 (1998)
[9] M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses”, J. Opt. Soc. Am. B 14, pp. 2348-2358 (1997)
[10] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser-pulse shaping by use of microsecond radiofrequency pulses”, Opt. Lett., Vol. 19, pp. 737~739 (1994)
[11] J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its applications”, Adv. Magn. Opt. Reson., Vol. 20 (1997)
[12] M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization”, Opt. Express, Vol. 3, pp. 366-375 (1998).
[13] L. Lepetit, G. Ch´eriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy”, J. Opt. Soc., Vol. 12, pp. 2467-2474 (1995).
[14] Lei Wang, A.M. Weiner, “Programmable spectral phase coding of an amplified spontaneous emission light source”, Optics Communications, Vol. 167, pp. 211–224 (1999).
[15] A.M. Weiner, J.P. Heritage, E.M. Kirschner, “High-resolution femtosecond pulse shaping”, J. Opt. Soc., Vol. 5, pp. 1563-1572 (1988).
[16] A.F. Fercher, “Optical coherence tomography”, Journal of biomedical optics, Vol. 1, pp. 157-173 (1996).
[17] H.P. Baltes, ed., Inverse Source Problems in Optics, Springer-Verlag, Berlin, 1978.
[18] E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data”, Optics Comm., Vol. 1, pp. 153-156 (1969).
[19] H.P. Baltes, H.A. Ferwerda, “Inverse problems and coherence”, IEEE Transactions on antennas and propagation, Vol. 29, pp. 405-406 (1981).
[20] A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry”, Optics Communications, Vol. 117, pp.43-48 (1995).
[21] A.C. Kak, and M. slaney, “priciples of computerized tomographic imaging”, IEEE Press, New York, 1988.
[22] A.F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, “Image formation by inversion of scattered field data: experiments and computational simulation”, Appl. Opt., Vol. 18, pp.2427–2439 (1979).
[23] A.M. Weiner, “Ultrafast optics”, Wiley, 28 OCT. 2008.
校內:立即公開