簡易檢索 / 詳目顯示

研究生: 陳建智
CHEN, CHIEN-CHIH
論文名稱: 應用模式樹建構印刷電路板裝配之表面黏著製程品質管制模式之研究
Constructing Quality Control Models for Surface Mount Technology in PCBs assembly Process-Applications of Model Tree
指導教授: 蔡長鈞
Tsai, Chang-Chun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 電路板裝配倒傳遞類神經網路多元線性迴歸資料探勘模式樹表面黏著技術
外文關鍵詞: SMT, Model Tree, Data Mining, back-propagation neural network, Multiple Linear Regression, PCB Assembly
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,資料分析之技術應用在電子業之之表面黏著技術(surface mount technology, SMT)製程的改善,不僅有相當多之文獻可供參考,且歷經數十年持續之發展,該製程已有穩定良好之生產良率。然自2006年7月1日起,輸往歐盟之產品須依照其所規範之危害物質限用「Restriction of Hazardous Substance,RoHS」指令,不可含有六項危害環境之危險物質,其中以鉛影響最大,乃因電子業原使用已超過四十年之含鉛焊材,在因應RoHS規範而改用無鉛者後,必須重新考量其材料合金成分與熔融焊點之改變,其中導致不良情況發生之各項要因,必須重新進行實驗以得到最佳之參數設定與材料選擇。
      由於無鉛化製程之導入,而使原本穩定之各製程參數產生許多不同於以往之設定與選擇,本研究則於此期間,在表面黏著製程站擷取一年份之製程資料,並應用模式樹方法來建構表面黏著製程品質管制模式,同時以多元線性迴歸來比較模式樹分枝後之迴歸預測結果,且藉倒傳遞類神經網路的強大預測能力來做為預測準確度的比較標竿。最後從預測能力指標來看,模式樹與倒傳遞類神經網路不相上下,卻明顯優於多元線性迴歸,且其所形成之樹狀結構確能清楚呈現資料之流向以及分類之法則,若能與統計製程管制(SPC)系統結合,確能給製程工程師在材料的選擇與參數的設定上予以參考之建議,以縮短實驗設計時程或產線偵錯作業的流程。

      The European Union issued Directive on the restriction and use of certain hazardous substances in electrical and electronic equipment. Known as Restriction of Hazardous Substances (RoHS), it was enforced throughout the European community effective 1 July 2006. With the RoHS directive, the companies whose electronic products that include lead based soldering would not be allowed to trade with the member states of the European Union. Therefore, companies would begin to experiment on a reengineering effort that could be unsuccessful if they do not find suitable alternatives.
      The data is collected from the surface mount process station in IC assembly factory while the company phased in lead-free process. Model tree is used to construct the quality control model to help process engineers identifying the critical variables that affect the results as yield. To validate the model, back-propagation neural network and multiple linear regression are used in this research.
      Finally, the predictive capability of this model is similar with back-propagation neural network but much better than multiple linear regression. Besides, it indeed provides clear process information and predicted yield for engineers through the tree branches and regression functions in the leaf-nodes while making decisions on troubleshooting and experiment designs.

    中文摘要……………………………………………… I 英文摘要………………………………………………… Ⅱ 誌謝……………………………………………………… Ⅲ 目錄…………………………………………………… Ⅳ 圖目錄…………………………………………………… Ⅶ 表目錄…………………………………………………… Ⅷ 第一章 緒論………………………………………… 1 1.1 研究背景與動機………………………………… 1 1.2 研究目的………………………………………… 2 1.3 研究流程……………………………………… 3 1.4 研究範圍與假設限制…………………………… 5 第二章 文獻回顧…………………………………… 7 2.1 表面黏著技術簡介…………………………… 7 2.1.1 錫膏印刷……………………………………… 7 2.1.2 零件搭載……………………………………… 8 2.1.3 迴焊…………………………………………… 9 2.2 表面黏著製程改善……………………………… 9 2.2.1 關於整體製程改善的文獻…………………… 9 2.2.2 錫膏印刷改善的文獻………………………… 12 2.2.3 零件搭載改善的文獻………………………… 13 2.2.4 迴焊改善的文獻……………………………… 16 2.3 表面黏著製程因素…………………………… 18 2.3.1 整體製程參數………………………………… 19 2.3.2 錫膏印刷製程參數…………………………… 23 2.3.3 迴焊爐製程參數……………………………… 24 2.4 資料探勘技術…………………………………… 25 2.4.1 知識發現……………………………………… 25 2.4.2 資料探勘……………………………………… 28 2.5 本研究方法說明………………………………… 37 2.5.1 本研究方法之選擇…………………………… 37 2.5.2 多元線性迴歸式……………………………… 39 2.5.3 模式樹………………………………………… 39 2.5.4 倒傳遞類神經網路…………………………… 41 2.6 小結……………………………………………… 44 第三章 研究方法…………………………………… 46 3.1 問題分析………………………………………… 46 3.2 資料作業……………………………………………48 3.2.1 資料蒐集……………………………………… 48 3.2.2 資料前置處理………………………………… 48 3.2.3 屬性選擇……………………………………… 50 3.2.4 資料轉換……………………………………… 51 3.3 模式建構………………………………………… 54 3.3.1 多元線性迴歸………………………………… 54 3.3.2 模式樹建構………………………………… 55 3.3.3 倒傳遞類神經網路建構……………………… 57 3.3.4 三種模式簡易比較………………………… 65 3.4 結果分析與評估………………………………… 66 3.4.1 評估方式……………………………………… 66 3.4.2 評估工具……………………………………… 67 3.5 軟體選擇………………………………………… 67 第四章 實例說明…………………………………… 69 4.1 資料處理………………………………………… 69 4.1.1 資料蒐集……………………………………… 69 4.1.2 資料前置處理……………………………… 70 4.1.3 屬性選擇……………………………………… 73 4.1.4 資料轉換與分群……………………………… 73 4.2 模式建構………………………………………… 75 4.2.1 模式樹………………………………………… 75 4.2.2 多元線性迴歸………………………………… 82 4.2.3 倒傳遞類神經網路…………………………… 84 4.3 分析與評估…………………………………… 87 4.3.1 模式比較……………………………………… 89 4.3.2 屬性探討與文獻驗證………………………… 91 第五章 結論………………………………………… 96 參考文獻……………………………………………… 98 圖目錄 圖1-1 本研究流程…………………………………… 4 圖2-1 一般表面黏著製程作業流程圖……………… 8 圖2-2 KDD七步驟程序模型………………………… 27 圖2-3 影響資料挖掘的領域……………………………29 圖2-4 資料探勘策略的階層圖…………………… 31 圖2-5 簡單的資料探勘處理模式…………………… 32 圖2-6 本研究方法選擇之創意漏斗………………… 38 圖2-7 倒傳遞類神經網路基本架構圖……………… 44 圖3-1 本研究方法架構圖………………………… 46 圖3-2 本研究資料蒐集政策………………………… 49 圖3-3 本研究屬性選擇政策………………………… 51 圖3-4 倒傳遞類神經網路運算流程圖…………………58 圖3-5 類神經網路神經元之數學模型…………… 60 圖3-6 雙彎曲函數圖形示意……………………… 61 圖4-1 表面黏著製程品質管制系統建構流程圖…… 69 圖4-2 以Weka運行M5P之模式樹輸出結果…………… 79 圖4-3 模式樹展開圖………………………………… 80 表目錄 表2-1 影響SMT製程品質之因子…………………… 26 表2-2 目前模式樹相關學門………………………… 41 表2-3 類神經網路模式簡表……………………… 42 表3-1 名目屬性轉為二元變數範例………………… 52 表3-2 本研究採用三種模式優缺點比較…………… 65 表4-1 本研究所蒐集之資料………………………… 71 表4-1(續) 本研究所蒐集之資料…………………… 72 表4-2 本研究所蒐集得之資料屬性一覽表………… 74 表4-3 模式樹所需資料格式之轉換與分組狀況…… 76 表4-4 多元線性迴歸所需資料格式之轉換與分組狀況…77 表4-5 倒傳遞類神經所需資料格式之轉換與分組狀況…78 表4-6 資料分群結果………………………………… 79 表4-7 所有資料集之模式樹中的線性模式……… 80 表4-8 模式樹十群交互驗證結果…………………… 81 表4-9 Pearson相關係數表………………………… 82 表4-10 各模式順向進入與反向淘汰變數一覽表…… 83 表4-11 各模式之摘要……………………………… 84 表4-12 各模式之變異數分析表……………………… 85 表4-13 各模式進入變數之係數表………………… 85 表4-14 多元線性迴歸所有資料集運行SPSS結果摘要…86 表4-15 多元線性迴歸十群交互驗證結果………… 86 表4-16 全部資料集以iDA軟體運行結果………… 88 表4-17 倒傳遞類神經網路十群交互驗證結果總覽……89 表4-18 本研究十群交互驗證結果總覽…………… 90 表4-19 多元線性迴歸十群交互驗證各變數之標準化係數…91 表4-20 多元線性迴歸與模式樹調整後之判定係數表…92 表4-21 落錫體積各模式順向進入與反向淘汰變數一覽表…… 93 表4-22 落錫體積各模式之摘要…………… 93 表4-23 落錫體積各模式之變異數分析表…………… 93 表4-24 落錫體積各模式進入變數之係數表………… 94

    邱皓政,量化研究法(二)統計原理與分析技術,雙葉書廊有限公司,民國九十四年。
    葉怡成,類神經網路模式應用與實作,儒林圖書公司,民國九十二年三月。
    Acciani, G., Brunetti, G.,& Fornarelli, G. (2006). Application of neural networks in optical inspection and classification of solder joints in surface mount technology. IEEE Transactions on Industrial Informatics, Vol.2, Issue 3, 200-209.
    Bard, J. F., Clayton, R. W.,& Feo, T. A. (1994). Machine setup and component placement in printed circuit board assembly. International Journal of Flexible Manufacturing Systems, Vol.6, 5-31.
    Berry, M. J. A.,& Linoff, G. S. (1997). Data Mining Techniques:for Marketing, Sales, and Customer Support. New York:Wiley Computer.
    Bhaskar, G.,& Narendran, T. T. (1996). Grouping PCBs for set-up reduction:a maximum spanning tree approach. International Journal of production research, Vol.34, No.3, 621-632.
    Breiman, L., Friedman, J. H., Olshen, R. A.,& Stone, C. J. (1984). Classification and Regression Trees . New York:Chapman & Hall.
    Chaudhuri, P., Huang, M. C., Loh, W. Y.,& Rubin, R. (1994). Piecewise-polynomial regression tree, Statistica Sinica, Vol.4, 143-167.
    Csaszar, P., Tirpak, T. M.,& Nelson, P. C. (2000). Optimization of a high-speed placement machine using tabu search algorithms. Annals of Operations Research, Vol.96, 125-147.
    Delen, D., Walker, G.,& Kadam, A. (2005). Predicting Breast Cancer Survivability:a comparison of three data mining methods . Artificial Intelligence in Medicine, Vol.34, 113-127.
    Dobra, A.,& Gehrke, J. E. (2002). SECRET:A Scalable Linear Regression Tree Algorithm. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 481-487.
    Eveloy, V., Ganesan, S., Fukuda, Y., Wu, J.,& Pecht, M.G. (2005). Are you ready for lead-free electronics. IEEE Transactions on Components and Packaging Technologies , Vol.28, No.4, 884-894.
    Fan, S. H., Chan, Y. C., Tang, C. W.,& Lai, J. K. L. (2001). Aging studies of PBGA solder joints reflowed at different conveyor speeds. IEEE Transactions on Advanced Packaging, Vol.24, Issue 4, 486-492.
    Fidan, I., Roush, E.,Tumkor, S.,& Kraft, R. P. (2006). Internet-based electronics manufacturing troubleshooting tool for surface mount PCB assembly. The International Journal of Advanced Manufacturing Technology, Vol.27 561–567.
    Fu, Y. (1997). Data mining task, technique and applications. IEEE POTENTIALS, October/November.
    Fujiuchi, S.,& Toriyama, K. (1994). Collective screen printing for carrier bump and SMT pads. Proceedings of IEEE/CPMT International Electronic Manufacturing Technology Symposium, 109-112.
    Garcia, M. P., & Kirschen, D. S. (2006). Forecasting system imbalance volumes in competitive electricity markets. IEEE Transactions on Power Systems, Vol.21, Issue 1, 240-248.
    Grudnistski, G., & Osburn, L. (1993). Forecasting S&P and Gold Future Prices:An Application of Neural Network. Journal of Futures Markets, 631-643.
    Guilliford, S., Webb, S., Rowbottom, C. G., Corne, D. W., & Dearnaley, D. P. (2004). Use of Artificial Neural Networks to Predict Biological Outcomes for Patient Receiving Radical Radiotherapy of the Prostate. Radiotherapy and Oncology, Vol.71, 3-12.
    Ha, S. H. (2006). Digital content recommender on the Internet. IEEE Intelligent Systems, Vol.21, Issue 2, 70-77.
    Hair, Joseph F., Jr., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.). New Jersey:Prentice-Hall Inc.
    Han, J.,& Kamber, M. (2001). Data Mining:Concepts and Techniques. San Francisco:Morgan Kaufmann.
    Ho, S. L., Xie, M., Tang, L. C., Xu, K.,& Goh, T. N. (2001). Neural network modeling with confidence bounds: a case study on the solder paste deposition process. IEEE Transactions on Electronics Packaging Manufacturing, Vol.24,Issue 4, 323-332.
    Ho, W.,& Ji, P. (2003). Component scheduling for chip shooter machines: a hybrid genetic algorithm approach. Computers and Operations Research, Vol.30, Issue 14, 2175-2189.
    Hop, N. V.,& Nagarur, N. N. (2004). The scheduling problem of PCBs for multiple non-identical parallel machines. European Journal of Operational Research, Vol.158, Issue 3, 577-594.
    Huang, C. C.,& Liang, W. Y. (2006). Explication and sharing of design knowledge through a novel product design approach. IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol.36, Issue 3, 426-438.
    Karalic, A. (1992). Employing linear regression in regression tree leaves. Proceedings of the 10th European Conference on Artificial Intelligence, 440-441.
    Kusiak, A. & Kurasek, C. (2001). Data mining of printed-circuit board defects. IEEE Transactions on Robotics and Automation, Vol.17, No.2, 191-196.
    Lambert, S., Abdulnour, G., Drolet, J.,& Cyr, B. (2006). Flexibility analysis of a surface mount technology electronic assembly plant: An integrated model using simulation. International Journal of Flexible Manufacturing Systems, Vol.17, 151-167.
    Lau, F. K. H. & Yeung, V. W. S. (1997). A hierarchical evaluation of the solder paste printing process. Journal of Materials Processing Technology, Vol.69, 79-89.
    Lee, N. C. (1999). Optimizing the reflow profile via defect mechanism analysis. Soldering & Surface Mount Technology, Vol.11, 13-20.
    Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, Vol.12, 361-386.
    Malerba, D., Esposito, F., Ceci, M.,& Appice, A. (2004). Top-Down Induction of Model Trees with Regression and Splitting Nodes. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.26, No.5, 612-625.
    Mannan, S. H., Ekere, N. N., Ismail, I.,& Ko, E. K. (1994). Squeegee Deformation Study in the Stencil Printing of Solder Pastes. IEEE Transactions on Components, Hybrids, and Manufacturing Technology- Part A, Vol.17, No.3, 470-475.
    Markstein, H. W. (1997). Controlling the Variables in Stencil Printing. Electronic Packaging & Production, Vol.37, No.2, 48-56.
    Martinez, E. E., Smith, A. E.,& Idanda, B. (1994). Reducing Waste in Casting with a Predictive Neural Model. Journal of Intelligent manufacturing, Vol.5, No.4, 277-286.
    Montgomery, D. C., Keats, J. B., Perry, L. A., Thompson, J. R.,& Messina, W. S. (2000). Using statistically designed experiments for process development and improvement: an application in electronics manufacturing. Robotics and Computer-Integrated Manufacturing, Vol.16, Issue 1, 55-63.
    Montgomery, D. C. (2005). Design and Analysis of Experiments (6th ed.). New York:John Wiley & Sons.
    Pan, J., Tonkay, G. L., Storer, R. H., Sallade, R.M.,& Leandri, D. J. (2004). Critical variables of solder paste stencil printing for micro-BGA and fine-pitch QFP. IEEE Transactions on Electronics Packaging Manufacturing, Vol.27,Issue 2, 125-132.
    Quinlan, J. R. (1992). Learning with continuous classes. Proceedings of the Australian Joint Conference on Artificial Intelligence, 343-348.
    Quinlan, J. R. (1993). Combining instance-based and model-based learning . Proceedings of the 10th International Conference on Machine learning, 236-243.
    Rajkumar, K.,& Narendran T. T. (1998). A heuristic for sequencing PCB assembly to minimize set-up times. Production Planning & Control, Vol.9, No.5 465-476.
    Ramkumar, S. M., Ghaffarian, R.,& Varanasi, A. (2006). Lead-free 0201 manufacturing, assembly and reliability test results. Microelectronics and Reliability, Vol.46, Issues 2-4, 244-262.
    Roiger, R. J.,& Geatz, M. W. (2003). Data Mining:A Tutorial-Based Primer. New York:Addison Wesley.
    Shih, W., Srihari, K.,& Adriance, J. (1996). Expert system based placement sequence identification for surface mount PCB assembly. International Journal of Advanced Manufacturing Technology, Vol.11, 413-424.
    Soto, H. P. (1998). Study of the thermal behavior of a printed circuit board during the reflow process inside a surface mount technology oven. Unpublished master dissertation, American University of Puerto Rico, Bayamon.
    Su, Y. Y., Srihari, K.,& Emerson, C. R. (1997). A profile identification system for surface mount printed circuit board assembly. Computers and Industrial Engineering, Vol.33, 337-380.
    Su, Y. Y.,& Srihari, K. (1996). Placement sequence identification using artificial neural networks in surface mount PCB assembly. The International Journal of Advanced Manufacturing Technology, Vol.11, 285-299.
    Tegethoff, M. M. V.,& Chen, T. W. (1995). A Clustered Yield Model for SMT Boards and MCM's. IEEE Transactions on Components and Packaging Technologies, Vol.18, No.4, 640-643.
    Tsai, T. N.,& Yang, T. (2005). A neuro-computing approach to the thermal profile control of the second-side reflow process in surface mount assembly. Journal of Manufacturing Technology Management, Vol.16, Issue.3 343-359.
    Ture, M., Kurt, I., Kurum, A. T.,& Ozdamar, K. (2005). Comparing Classification Techniques for Predicting Essential Hypertension. Expert Systems with Applications, Vol.29, 583-588.
    Wang, Y.,& Witten, I. H. (1997). Inducing model trees for continuous classes. Proceedings of poster papers of 9th European Conference on Machine Learning.
    Whitmore, M., Mackay, C.,& Hobby, A. (1997). Plastic Stencils for Bottom-Side Chip Attach. Electronic Packaging & Production, Vol.37, No.13, 68-72.
    Witten, I. H.,& Frank, E. (2005). Data Mining:Practical Machine Learning Tools and Techniques (2nd ed.). San Francisco:Morgan Kaufmann.
    Wu, C. H., Srihari, K.,& McLenaghan, A. J. (1996). A knowledge-based thermal profile identification advisor for surface mount PCB assembly. The International Journal of Advanced Manufacturing Technology, Vol.11 343-352.
    Yang, T., Tsai, T. N.,& Yeh, J. (2005). A neural network-based prediction model for fine pitch stencil-printing quality in surface mount assembly. Engineering Applications of Artificial Intelligence, Vol.18, Issue 3, 335-341.
    Zhang, G., Hu, M. Y., Patuwo, P.E. & Indro, D.C. (1999). Artificial Neural Networks in Bankruptcy Prediction:General Framework and Cross-Validation Analysis. European Journal of Operational Research, Vol.116, No.1, 16-32.

    下載圖示 校內:立即公開
    校外:2007-06-14公開
    QR CODE