簡易檢索 / 詳目顯示

研究生: 黃大容
Huang, Da-Rong
論文名稱: 應用於2.4/5.7-GHz雙頻WLAN射頻收發機之 系統規劃及RF CMOS晶片研製
Research on System Planning and CMOS RFIC Design for 2.4/5.7-GHz Dual-Band WLAN RF Transceiver
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 176
中文關鍵詞: 直接降頻接收機無線區域網路雙頻
外文關鍵詞: direct conversion receiver, dual-band, wlan
相關次數: 點閱:79下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先研討應用於IEEE 802.11 a/b/g之RFIC射頻收發機系統規劃,再以TSMC 0.18m 1P6M CMOS製程來研製適用於IEEE 802.11a/b/g系統規劃之2.4/5.7 GHz CMOS雙頻WLAN收發機。第一部份之研究首先根據802.11a/b/g標準內訂定的直接降頻射頻接收機測試(靈敏度,非相鄰/相鄰頻道干擾與最大功率輸入)與參考HIPERLAN/2的阻隔測試與贅餘響應,找出符合應用於802.11a/b/g規範的直接降頻射頻接收機射頻效能參數的要求:於IEEE 802.11a規範中,NF≦10 dB,IIP3≧-20 dBm,IIP2≧-3.2 dBm,Pin,max≧-27 dBm;於IEEE 802.11b規範中,NF≦10.5 dB,IIP3≧-10.3 dBm,IIP2≧17.5 dBm,Pin,max ≧-10 dBm;於IEEE 802.11g規範中,NF≦10 dB,IIP3≧-10.3 dBm,IIP2≧17.5 dBm,Pin,max ≧-20 dBm,同時亦探討直接降頻接收機的優缺點與應用IEEE 802.11a/b/g的接收機系統規劃。
    第二部份為以TSMC 0.18 m 1P6M CMOS製程來研製應用於802.11a/b/g WLAN之2.4/5.7 GHz 雙頻WLAN射頻收發機RFIC。RFIC晶片採用打鎊線至PCB上進行量測,其中包括2.4/5.7 GHz CMOS雙頻LNA、mixer、VCO、DCR及PA。最後2.4/5.7 GHz雙頻直接降頻接收模組進行整合測試,在2.4/5.7 GHz頻帶中量測所得增益為25.8/20.5 dB,雜訊指數為5.3/6.6 dB,input P1dB為-28.5/-19 dBm,IIP3為-17.5/-12.7 dBm。在數位調變訊號量測方面,於IEEE 802.11a(data rate=54 Mbps,64 QAM)訊號中,靈敏度為-71.2 dBm;於IEEE 802.11b(data rate=11 Mbps,CCK) 訊號中,靈敏度為-77.2 dBm;於IEEE 802.11g(data rate=54 Mbps,64 QAM)訊號中,靈敏度為-73 dBm。除了2.4 GHz的線性度(最大可接收功率及IIP3)低於規範外,其餘量測參數皆符合規範所需。
    本論文並有研製應用於WLAN之2.4/5.7 GHz分工式CMOS雙頻超外差射頻接收機(TSMC 0.18 m),其中整合雙頻低雜訊放大器以及混波器等電路。(列於附錄)

    This thesis first presents the research on system planning for 2.4/5.7 GHz dual-band CMOS WLAN RF transceiver, and then the design and implementation of CMOS RFICs for IEEE 802.11 a/b/g WLAN RF transceiver in a TSMC 0.18 m CMOS process. In the first part, system planning parameters for direct-conversion receiver (DCR) including phase noise, noise figure, IIP3, IIP2 and I/Q imbalance are derived to meet the 802.11a//b/g standard requirements. The derived RF parameters which meet 802.11a standard requirements are: NF≦10 dB, IIP3≧-20 dBm, IIP2≧-4 dBm, input P1dB>-27 dBm; 802.11b standard requirements are: NF≦10.5 dB, IIP3≧-10.3 dBm, IIP2≧17.5 dBm, Pin,max ≧-10 dBm; 802.11g standard requirements are: NF≦10 dB, IIP3≧-10.3 dBm, IIP2≧17.5 dBm, Pin,max ≧-20 dBm. We also discuss the advantages of the direct conversion receiver and research on the system planning of the direct conversion receiver for IEEE 802.11a/b/g standard.
    In the second part, the thesis presents the design and implementation of CMOS RFICs for IEEE 802.11 a/b/g WLAN RF transceiver in a TSMC 0.18 m CMOS process. The dual-band RF transceiver includes 2.4/5.7 GHz CMOS dual-band LNA, mixer, VCO, DCR and PA. For the final integrated testing, the 2.4/5.7 GHz dual-band RF receiver which includes the frequency synthesizer exhibits a conversion gain of 25.8/20.5 dB, noise figure of 5.3/6.6 dB, input P1dB of -28.5/-19 dBm, IIP3 of -17.5/-12.7 dBm. For the digital modulation measurement, the sensitivity is -71.2 dBm in the 802.11a standard (data rate = 54 Mbps, 64 QAM); the sensitivity is -77.2 dBm in the 802.11b standard (data rate = 11 Mbps, CCK); the sensitivity is -73 dBm in the 802.11g standard (data rate = 54 Mbps, 64 QAM); all of these above meet the specifications except the receiver linearity including the maximum input power and IIP3. In addition, a 2.4/5.7 GHz CMOS dual-band super-heterodyne receiver which includes dual-band LNA and mixer for WLAN applications are appendixed.

    目 錄 第一章 緒論 Introduction 1.1 無線區域網路系統簡介 1 1.2 論文章節介紹 3 第二章 IEEE 802.11 a/b/g之RFIC射頻收發機系統規劃 2.1 IEEE 802.11a/b/g WLAN射頻收發機相關規範 5 2.1.1 IEEE 802.11a之相關規範 5 2.1.2 IEEE 802.11b之相關規範 9 2.1.3 IEEE 802.11g之相關規範 11 2.1.4 射頻接收機的效能參數 11 2.2 應用於IEEE 802.11a之直接降頻接收機系統規劃 20 2.2.1 接收機之整體雜訊指數(Noise Figure)要求 20 2.2.2 接收機之鄰近頻道/相隔鄰近頻道選擇性(Selectivity)要求 23 2.2.3 接收機之第三階截斷點(IP3)及第二階截斷點(IP2)要求 25 2.2.4 接收機之輸入1-dB增益壓縮點(Input P1dB)要求 29 2.2.5 接收機之錯誤向量大小(EVM)要求 29 2.2.6 接收機之整體射頻參數要求整理 30 2.3 應用於IEEE 802.11b之直接降頻接收機系統規劃 30 2.3.1 接收機之整體雜訊指數要求 30 2.3.2 接收機之鄰近頻道選擇性要求 31 2.3.3 接收機之第三階截斷點及第二階截斷點要求 32 2.3.4 接收機之輸入1-dB增益壓縮點要求 32 2.3.5 接收機之錯誤向量大小要求 32 2.3.6 接收機之整體射頻參數要求整理 33 2.4 應用於IEEE 802.11g之直接降頻接收機系統規劃 33 2.4.1 接收機之整體雜訊指數要求 34 2.4.2 接收機之鄰近頻道/相隔鄰近頻道選擇性要求 34 2.4.3 接收機之第三階截斷點及第二階截斷點要求 34 2.4.4 接收機之輸入1-dB增益壓縮點要求 34 2.4.6 接收機之整體射頻參數要求整理 35 2.5 應用於IEEE 802.11a/b/g直接降頻接收機之鏈路計算 36 第三章 2.4/5.7-GHz CMOS雙頻低雜訊放大器 3.1 低雜訊放大器雜訊模型推導 39 3.1.1 等效輸入雜訊溫度 41 3.2 雙頻低雜訊放大器架構介紹 49 3.2.1 共用式雙頻低雜放大器 49 3.2.2 切換式雙頻低雜放大器 50 3.2.3 分工式雙頻放大器 50 3.3 2.4/5.7-GHz 分工式雙頻CMOS低雜訊放大器設計與製作 51 3.3.1 設計流程 51 3.3.2 模擬與量測結果 53 3.3.3 結果與討論 57 第四章 2.4/5.7-GHz低功率分工式CMOS雙頻混波器 4.1 原理簡介 59 4.2 中頻頻率考量 63 4.3 2.4/5.7-GHz低功率分工式CMOS雙頻混波器設計與製作 64 4.3.1 設計流程 66 4.3.2 模擬與量測結果 67 4.3.3 結果與討論 72 第五章 2.4/5.7-GHz寬頻帶推推式CMOS雙頻壓控振盪器 5.1 振盪原理 73 5.2 LC Tank振盪器 76 5.3 相位雜訊(Phase Noise) 77 5.4 2.4/5.7-GHz寬頻帶推推式雙頻壓控振盪器設計與製作 83 5.4.1 設計流程 86 5.4.2 模擬與量測結果 88 5.4.3 結果與討論 94 第六章 2.4/5.7-GHz低功率CMOS雙頻直接降頻接收機 6.1 接收機架構介紹 95 6.2 2.4/5.7-GHz低功率CMOS雙頻直接降頻接收機設計與製作 99 6.2.1 設計流程 100 6.2.2 模擬與量測結果 103 6.2.3 結果與討論 111 第七章 2.4/5.7-GHz CMOS雙頻功率放大器 7.1 功率放大器原理 115 7.1.1 負載線理論 119 7.1.2 功率等位圓[25] 122 7.1.3 負載調整法(Load Pull)[25] 126 7.1.4 線性度 127 7.1.5 共用式(Concurrent)雙頻阻抗匹配法 128 7.2 2.4/5.7 GHz 共用式CMOS雙頻功率放大器設計與製作 131 7.2.1 設計流程 131 7.2.2 模擬與量測結果 135 7.2.3 結果與討論 142 第八章 IEEE 802.11 a/b/g之CMOS接收模組整合量測 8.1 整合量測電路簡介 143 8.2 2.4、5.7 GHz RF帶通濾波器量測 145 8.3 2.4/5.7 GHz 直接降頻接收機整合特性量測 147 8.4 接收機之數位調變訊號量測 149 8.5 結果與討論 156 第九章 結論...........................................................................................................155 參考文獻......................................................................................................................159 附錄 2.4/5.7-GHz分工式CMOS雙頻超外差射頻接收機 A.1 接收機架構簡介 165 A.2 2.4/5.7-GHz 分工式CMOS雙頻超外差接收機設計與製作 166 A.2.1 設計流程 166 A.2.2 模擬與量測結果 170 A.2.3 結果與討論 176

    参考文獻

    [1] IEEE std. 802.11a-1999, “Part11: wireless lan medium access control(MAC) and physical layer(PHY) specifications: high-speed physical layer in the 5 GHz band.” IEEE std. 802.11a-1999, Dec. 1999.
    [2] ETSI, “Broad band radio access networks(BRAN); HIPERLAN type 2 technical specification; physical (PHY) layer,” ETSI, Aug. 1999.
    [3] IEEE std. 802.11b-1999, “Part 11: wireless lan medium access control(MAC) and physical layer(PHY) specifications: high-speed physical layer in the 2.4 GHz Band.” IEEE std. 802.11b-1999, pp. i-90, Sep. 1999.
    [4] IEEE std. 802.11gTM-2003, “Part 11: wireless lan medium access control(MAC) and physical layer(PHY) specifications amendment 4: further higher data rate extension in the 2.4 GHz band.” IEEE std. 802.11gTM-2003, pp.i-67, June 2003.
    [5] 李亮輝,802.11a WLAN 接收機射頻系統規劃與5 GHz CMOS 差動LNA/Mixer之設計,國立成功大學電機工程研究所碩士論文,民國
    九十一年年.
    [6] P. Vizmulleri, RF Design Guide: Systems, Circuits, and Equations, Artech House, 1995.
    [7] S. A. Maas, Nonlinear Microwave Circuits, Artech House, 1988.
    [8] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
    [9] R. V. Nee and R. Prasad, OFDM Wireless Multimedia Communication, Artch House, 2000.
    [10] 涂繼剛,IEEE 802.11a/b/g 射頻收發模組之系統模擬與整合測試及雙頻帶CMOS低雜訊放大器,國立中正大學電機工程研究所碩士論文,民國九十二年.
    [11] H. Samavati, H. R. Rategh and T. H. Lee, “A 5 GHz CMOS wireless-lan receiver front-End,” IEEE J. of Solid-State Circuits, vol.35, no.5, pp.765-772, May 2000.
    [12] 朱元凱,應用於802.11a WLAN之5 GHz U-NII 頻帶降頻器 CMOS RFIC,國立功大學電機工程研究所碩士論文,民國九十一年。
    [13] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers—theory, design, and applications,” IEEE Tran. Microwave Theory and Technology, vol. 50, issue 1, part 2, pp. 288–301, Jan. 2002.
    [14] L. H. Lu, H. H. Hsieh and Y. S. Wang, “A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier,” IEEE Micro. Wireless Compon. Lett. , vol. 15, issue 10, pp. 685-687, OCT. 2005.
    [15] D. K. Shaeffer and T. H. Lee, ”A 1.5-V 1.5-GHz CMOS low noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
    [16] 袁杰,高頻通信電路設計-振盪電路相鎖環路及頻率合成器,全華書局,民國八十三年。
    [17] 于宗仁,應用在HDTV/ITV寬頻帶射頻調諧器及900-MHz/2.4-GHz無線通訊之頻率合成器的設計,國立成功大學電機工程研究所碩士論文,民國八十六年。
    [18] A. Hajimiri and T. H. Lee,“Oscillator phase noise: a tutorial,” IEEE J. of Solid-State Circuits, vol. 32, no. 3, pp. 326-336, March 2000.
    [19] B. Razavi, Design of Analog CMOS Integrated Circuit, Mc Graw Hill, 1996.
    [20] B. Min and H. Jeong, “5-GHz CMOS LC VCOs with wide tuning ranges,” IEEE Micro. Wireless Compon. Lett. , vol. 15, issue 5, pp. 336 – 338, May 2005.
    [21] P. B. Kenington, High-Linearity RF Amplifier Design, Artech House, 2000.
    [22] E. Chen, D. Heo, M. Hamai, J. Laskar and D.Bien, “0.24-m CMOS technology for bluetooth power applications,” in IEEE Radio and Wireless Conf. , pp. 163-166, 2000.
    [23] C. Wang, L. E. Larson and P. M. Asbeck, “A Nonlinear capacitance cancellation technique and its application to a CMOS class AB power amplifier,” in IEEE Radio Frequency Integrated Circiuts Symp. Dig. of Papers, pp. 39-42, 2001.
    [24] T. Yoshimasu, M. Akagi, N. Tanba and S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone application”, IEEE J. of Solid-State Circuits, vol. 33, no. 9, pp. 1290-1296, 1998.
    [25] 邱永明,應用於2.4及5.7 GHz 802.11 WLAN之CMOS單晶射頻積體電路,國立成功大學電機工程研究所碩士論文,民國九十二年。
    [26] S. C. Cripps, RF Power Amplifier for Wireless Communications, Artech House, 1999.
    [27] 顏呈機,2.4 GHz ISM頻帶收發機射頻前端CMOS RFIC及使用二極體 線性器CMOS PA之研製,國立成功大學電機工程研究所碩士論文,民國九十一年。
    [28] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers: characterization and implications,” IEEE Microwave Magazine, vol. 6, issue 3, pp. 76 – 86, Sept. 2005.

    下載圖示 校內:2007-07-28公開
    校外:2009-07-28公開
    QR CODE