簡易檢索 / 詳目顯示

研究生: 黃柏霖
Huang, Po-Lin
論文名稱: 基於決定性模糊關係矩陣之模糊時間序列預測模式
A Study of Fuzzy Time Series Forecasting based on Deterministic Fuzzy Relation Matrix
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 67
中文關鍵詞: 模糊理論模糊時間序列預測模糊關係矩陣
外文關鍵詞: Fuzzy theory, Fuzzy time series forecasting, Fuzzy relation matrix
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人類的思維具有模糊性和不確定性的特性,傳統的時間序列已經無法滿足所需。模糊時間序列由Song及Chissom (1993) 利用Zadeh (1965) 提出的模糊集合理論發展,除了廣泛的應用在預測方法外,儼然已成為決策問題的解決之道。而後有學者直接或間接證明,其處理模糊及不確定性的資料具有相當大的可信度以及貢獻。然而,在眾多的模糊時間序列研究中,大多數方法採用相同樣本(in-sample)進行訓練和預測,較少以不同樣本(out-sample)的研究,雖然不同樣本的預測模式較貼近實際預測的情境,但是在歷史資料上找不到預測法則的情況,卻是讓許多學者卻步的原因之ㄧ。
    在模糊時間序列預測中又可分為兩個議題:其一是足以代表模糊時間序列模型的關鍵因素-模糊邏輯關係;另一個是常應用於關聯矩陣的模糊關係式。模糊邏輯關係是以挖掘歷史資料之間的隱藏關係為主,而模糊關聯矩陣則具有紀錄歷史資料模糊歸屬度轉換能力。因此,本研究提出一個改善的決定性預測模型,整合模糊邏輯關係與模糊關聯矩陣之優點,用以充分解決歷史資料無法匹配的議題,期能處理更精確的模糊時間序列之預測結果。
    為驗證本研究所提出的預測模式,本研究應用來自於世界權威金融分系機構的美國標準普爾公司(Standard & Poor,S&P)、台灣中央氣象局(Taiwan Central Weather Bureau)以及雅虎財經(Yahoo! Finance)之真實資料庫,並將預測結果與其他模糊時間序列的模型做比較。為了衡量預測模式的綜合成效,以預測精準度、語意精準度、趨勢準確度三種評估指標比較實驗結果,期本研究之預測模式能協助決策者更精確地進行決策之參考。

    Due to human-thinking pays lots of attention dealing with vagueness and incompleteness inherent in data, traditional time series approaches couldn’t satisfy the forecasting problem. Fuzzy time series was first proposed by Song and Chissom (Song & Chissom, 1993a), and it has been widely applied not only on forecasting method but also the solution for decision making. The reliability of handling ambiguous data and contribution of the framework of Song and Chissom’s model were proofed directly and indirectly by more and more researchers.
    However, Fuzzy time series forecasting can be divided into two issues: One is fuzzy logical relation - a crucial connector in presenting fuzzy time series model, and another is fuzzy relational equations, employed based on relation matrix. Fuzzy logical relation used to discover hidden relations between historical data, and fuzzy relation matrix has the ability of recording membership degree’s transformation. In this study, we proposed an improved deterministic forecasting model, and integrated the advantages of fuzzy logical relation and fuzzy relation matrix in order to deal with nonmatching problems and achieve the better accuracy.
    Finally, we apply the data sets which extract from Standard & Poor (S&P), Taiwan Central Weather Bureau and Yahoo Finance in our proposed model, moreover, we compare to the other fuzzy time series forecasting models. To verify the performance and the effectiveness of the forecasting model, we evaluated the result of experiments using three kinds of indicators: prediction accuracy, linguistic accuracy, trend accuracy.

    摘要 III Abstract IV 誌謝 V Table of Contents VI List of Tables VIII List of Figures IX CHAPTERⅠ Introduction 1 1.1 Background and motivation 1 1.2 The goal and contribution of this thesis 4 1.3 The structure of this thesis 6 CHAPTERⅡ Literature Review 8 2.1 Fuzzy theory & fuzzy time series 8 2.1.1 Fuzzy set 8 2.1.2 Membership function 10 2.1.3 Fuzzy time series 11 2.1.4 Fuzzy composition operator and defuzzification method 14 2.2 Fuzzy time series forecasting model 16 2.2.1 Fuzzy relation matrix 19 2.2.2 Fuzzy logical relation 24 2.3 Summary 28 CHAPTERⅢ Model Development 30 3.1 Data preprocess and data analysis 31 3.1.1 The universe of discourse and the intervals 31 3.1.2 Define fuzzy sets and fuzzification 34 3.2 Deterministic rule base 35 3.3 Fuzzy Markov relation matrix 37 3.4 Fuzzy rule base inference 40 CHAPTERⅣ Experiment and Evaluation 43 4.1 Experiment on DFMM 43 4.1.1 Forecasting indicator 43 4.1.2 Procedure of DFMM 45 4.1.3 Parameter within combination experiments 53 4.2 Performance evaluation and comparison 55 4.2.1 In-sample verification with House Price Index, U.S 55 4.2.2 Out-sample verification with S&P 500 and Google Stock 57 CHAPTERⅤ Conclusions and Future Work 62 5.1 Conclusions 62 5.2 Future work 63 Reference 64

    Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy sets and systems, 81(3), 311–319.
    Chen, S. M. (2002). Forecasting Enrollments Based on High-order Fuzzy Time Series. Cybernetics & Systems, 33(1), 1-16.
    Chen, S. M., & Chung, N.-Y. (2006). Forecasting enrollments using high-order fuzzy time series and genetic algorithms. International Journal of Intelligent Systems, 21(5), 485-501.
    Chen, S. M., & Hsu, C. C. (2004). A new method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 2(3), 234–244.
    Chen, S. M., & Hwang, J. R. (2002). Temperature prediction using fuzzy time series. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics, 30(2), 263–275.
    Cheng, Y.-C. (2008, October 2). Deterministic Forecasting Models for Fuzzy Time Series (Ph.D Thesis). National Cheng Kung University, Tainan, Taiwan.
    Filev, D. P., & Yager, R. R. (1991). A generalized defuzzification method via bad distributions. International Journal of Intelligent Systems, 6(7), 687-697.
    Hsu, Y. Y., Tse, S. M., & Wu, B. (2003). A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 11(6), 671–690.
    Huang, D., & Chow, T. W. S. (2005). Effective feature selection scheme using mutual information. Neurocomputing, 63, 325–343.
    Huarng, K. (2001a). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123(3), 369-386.
    Huarng, K. (2001b). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems, 123(3), 387–394.
    Huarng, K., & Yu, T. H.-K. (2006). Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36(2), 328-340.
    Lee, C. H. L., Liu, A., & Chen, W. S. (2006). Pattern discovery of fuzzy time series for financial prediction. IEEE Transactions on Knowledge and Data Engineering, 613–625.
    Lee, L. W., Wang, L. H., & Chen, S. M. (2008). Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques. Expert Systems with Applications, 34(1), 328–336.
    Lee, Y. C., Hwang, E., & Shih, Y. P. (2002). A combined approach to fuzzy model identification. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics, 24(5), 736–744.
    Leekwijck, W. V., & Kerre, E. E. (1999). Defuzzification: criteria and classification. Fuzzy Sets and Systems, 108(2), 159-178.
    Lendasse, A., Ji, Y., Reyhani, N., & Verleysen, M. (2005). LS-SVM hyperparameter selection with a nonparametric noise estimator. Artificial Neural Networks: Formal Models and Their Applications-ICANN 2005, 625–630.
    Li, J. Y. (2008). A Study of Forecasting Two-factor Fuzzy Time Series using a Stochastic Hidden Markov Model (Master Thesis). National Cheng Kung University, Tainan, Taiwan.
    Li, S.-T., & Chen, Y. P. (2005). Natural partitioning-based forecasting model for fuzzy time-series. 2004 IEEE International Conference on Fuzzy Systems (Vol. 3, p. 1355–1359). Presented at the IEEE International Conference on Fuzzy Systems, Budapest, Hungary.
    Li, S.-T., & Cheng, Y.-C. (2007). Deterministic fuzzy time series model for forecasting enrollments. Computers & Mathematics with Applications, 53(12), 1904–1920.
    Li, S.-T., & Cheng, Y.-C. (2009). An Enhanced Deterministic Fuzzy Time Series Forecasting Model. Cybernetics and Systems, 40(3), 211-235.
    Li, S.-T., & Cheng, Y.-C. (2010). A Stochastic HMM-Based Forecasting Model for Fuzzy Time Series. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(5), 1255-1266.
    Li, S.-T., Cheng, Y.-C., & Lin, S. Y. (2008). A FCM-based deterministic forecasting model for fuzzy time series. Computers & Mathematics with Applications, 56(12), 3052–3063.
    Liu, F., Du, P., Weng, F., & Qu, J. (2007). Use clustering to improve neural network in financial time series prediction.
    Li-Wei Lee, Li-Hui Wang, Shyi-Ming Chen, & Yung-Ho Leu. (2006). Handling forecasting problems based on two-factors high-order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14(3), 468-477.
    Morville, P. (2005). Ambient Findability: What We Find Changes Who We Become (1st ed.). O’Reilly Media.
    Own, C.-M., & Yu, P.-T. (2005). Forecasting Fuzzy Time Series on a Heuristic High-order Model. Cybernetics & Systems, 36(7), 705-717.
    Pham, H. T., Tran, V. T., & Yang, B. S. (2010). A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting. Expert Systems with Applications, 37(4), 3310–3317.
    Pouzols, F. M., & Barros, A. B. (2010). Automatic clustering-based identification of autoregressive fuzzy inference models for time series. Neurocomputing, 73(10-12), 1937–1949.
    Song, Q., & Chissom, B. S. (1993a). Fuzzy time series and its models. Fuzzy Sets and Systems, 54(3), 269–277.
    Song, Q., & Chissom, B. S. (1993b). Forecasting enrollments with fuzzy time series — Part I. Fuzzy Sets and Systems, 54(1), 1-9.
    Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series — part II. Fuzzy Sets and Systems, 62(1), 1-8.
    Sullivan, J., & Woodall, W. H. (1994). A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets and Systems, 64(3), 279-293.
    Wangming, W. (1986). Fuzzy reasoning and fuzzy relational equations. Fuzzy Sets and Systems, 20(1), 67-78.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, (8), 338-353.
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–I. Information sciences, 8(3), 199–249.

    無法下載圖示 校內:2023-12-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE