簡易檢索 / 詳目顯示

研究生: 楊舜傑
Yang, Shun-chieh
論文名稱: 微生物及鹽度對不鏽鋼材料之腐蝕影響:以台南市四草野生動物保護區為例
The Effects of Microbes and Salinity on the Corrosion of Stainless Steel: The Hsih-Tsao Wildlife Conservation Area of Tainan City as an Example Site
指導教授: 簡錦樹
Jean, Jiin-shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 腐蝕微生物鹽度不鏽鋼
外文關鍵詞: corrosion, microbe, salinity, stainless steel
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究實驗地點為台南四草野生動物保護區的魚塭水池(A、B、C、D池)及出入水口(I),實驗分為現地及實驗室兩部分。在現地放置304材質之不鏽鋼鍋進行一年的觀察,發現304材質的不鏽鋼腐蝕情形,有著季節性的變化。在春夏時,腐蝕的現象明顯並且有不同的腐蝕現象,腐蝕現象至少為三類(紅棕色物質的生成、黑色物質的生成、蝕刻現象的出現);在秋冬時,腐蝕的現象不明顯或沒有腐蝕情形。在實驗室利用304材質之不鏽鋼棒進行腐蝕實驗,由野外實驗結果得知腐蝕的現象和鹽度有某種相關性,因此分別在五種不同鹽度(S1:7.4‰;S2:13.5‰;S3:17.2‰;S4:23.5‰;S5:36.6‰)下以硫酸還原培養基培養細菌,再各別放入不鏽鋼棒。在鹽度低時,腐蝕現象就顯著(重量減輕)或不同;在鹽度高時,腐蝕現象就不明顯或沒有腐蝕情形(重量增加)。實驗室結果顯示鹽度或許是一種不鏽鋼之腐蝕因素,而微生物又是另一種造成腐蝕的因素,另外,鹽度在較低範圍時,鹽度及微生物所造成的腐蝕最為嚴重,研究成果可以做為日後不鏽鋼防腐的參考依據。

    The experimental sites of this study were in the aquacultural ponds (ponds A, B, C, and D) and the water inlet (I) of the Hsih-Tsao Wildlife Conservation Area, Tainan City. The on-site and laboratory experiments were carried out in this study. In the field, the 304-type stainless steel pans were placed one year in ponds A, B, C, and D and at the water inlet (I) for their corrosion observations. The results revealed that there existed a seasonal change in the corrosion of 304-type stainless steel. In spring and summer, the corrosion of the stainless steel was remarkable, revealing three different kinds of corrosion patterns (formation of red-brown matter, formation of black matter, and appearance of etching). In the laboratory, the experimental results of corrosion tests on the 304-type stainless steel coupon demonstrated that the corrosion was somewhat correlated with salinity. Thus, the bacteria isolated from the adhesives on the corroded stainless pans in ponds A, B, C, D and the water inlet were cultivated in the sulfate-reducing medium with five different salinities (S1: 7.4‰, S2: 13.5‰, S3: 17.2‰, S4: 23.5‰, S5: 36.6‰), in which the 304-type stainless steel coupon was put in separately. The results showed that the corrosion was marked (loss of weight) while the coupon was in the low salinity medium, whereas the corrosion was not significant while that was in the high salinity medium. This suggests that salinity and microbes can be causative factors of corrosion. In the low salinity medium, salinity and microbes could cause the most severe corrosion of stainless steel, suggesting being a good reference for the anti-corrosion of stainless steel.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 1. 前言 1-1 1.1 研究區域描述 1-5 1.1.1 區域概況 1-5 1.1.2 水文地質概況 1-5 1.1.3 研究範圍 1-6 1.2 不鏽鋼的起源及特性 1-8 1.3 文獻回顧 1-9 2. 研究方法 2-1 2.1 現地調查 2-1 2.2 不鏽鋼放置點 2-2 2.3 實驗室分析 2-4 2.3.1 培養基的配方 2-4 2.3.2 菌種培養 2-6 2.3.3 不鏽鋼放置於現地的池水 2-10 2.3.4 不鏽鋼及微生物放置於不同鹽度的培養基 2-10 2.3.5 鹽度的影響 2-11 2.3.6 不鏽鋼腐蝕現象 2-11 3. 實驗結果 3-12 3.1 池水基本理化參數量測 3-12 3.2 雨量和鹽度相互關係 3-18 3.3 不鏽鋼腐蝕情形 3-22 3.3.1 不鏽鋼重量的改變情形 3-37 3.3.2 不鏽鋼成份的改變情形 3-48 3.4 現地所培養出來的微生物 3-52 4. 討論 4-1 4.1 鹽度的討論 4-1 4.2 腐蝕現象的討論 4-3 4.3 菌種的討論 4-3 5. 結論 5-1 6. 參考文獻 6-1 7. 附錄 7-1

    林良平,土壤微生物學,南山堂出版社,台北,407,1993
    曹哲維,台南市四草野生動物保護區鹽沼溼地底泥有機物之細菌分解,國立成功大學地球科學系碩士論文,2005
    蔡侑蓉,台南市四草野生動物保護區鹽沼地之底泥中水文及微生物對不銹鋼的腐蝕影響,行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告(NSC 93-2815-C-006-025-M),2005
    Acuna N., Ortega-Morales B.O. and Valadez-Gonzalez A. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 steel exposed to Gulf of Mexico seawater. Marine Biotechnology, 8, 62-70, 2006
    Atlas R. M. and Bartha R. Microbial ecology fundamental and applications, Addison Wesley Longman, Inc. California, 354-355, 1998
    Axelsen S. B and Rogne T. Do micro-organisms “eat” metal? Microbiologically influenced corrosion of industrial materials, Contract No. BRRT-CT98-5084, 1998
    Baker P. W., Ito K. and Watanabe K., Marine prosthecate Bacteria involved in the ennoblement of stainless steel. Environmental Microbiology, 5(10), 925-932, 2003
    Beech I. B. and Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15, 181-186, 2004
    Bermont-Bouis D., Janvier M., Grimont P. A. D., Dupont I. and Vallaeys T., Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine Biocorrosion of carbon steel. Journal of Applied Microbiology, 102, 161-168, 2007
    Blakemore R. P., Maratea D. and Wolfe R. S., Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol, 140(2), 720-729, 1979.
    Crundwell F., The formation of biofilms of iron-oxidsing bacteria on pyrite. Minerals Engineering, 9(10), 1081-1089, 1996
    Duan J., Hou B. and Yu Z., Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria. Materials Science and Engineering, 26, 624-629, 2006
    Fang H. H. P, Xu L. C. and Chan K. Y., Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Research, 36, 4709-4716, 2002
    Gonzalez J. E. G., Santana F. J. H. and Mirza-Rosca J. C., Effect of bacterial biofilm on 316 SS corrosion in natural seawater by EIS. Corrosion Science, 40(12), 2141-2154, 1998
    Hamilton W. A., Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 19(1), 65-76, 2003
    Huang G., Chan K. Y. and Fang H. H. P., Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater. Journal of the Electrochemical Society, 151(7), 434-439, 2004a
    Huang Y., Duan J. and Ma S., Effects of anaerobe in sea bottom sediment on the corrosion of carbon steel. Materials and Corrosion, 55(1), 46-48, 2004b
    Javaherdashti R., Singh Raman R.K., Panter C. and Pereloma E.V., Microbiologicall assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria. International Biodeterioration & Biodegradation, 58, 27-35, 2006
    Lippold J. C. and Kotecki D. J., Welding Metallurgy and Weldability of Stainless Steels. John Wiley & Sons, Inc., New Jersey, 2-4, 2005
    Lopes F. A., Morin P., Oliveira R. and Melo L. F., The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans. Colloids and Surfaces B: Biointerfaces, 46, 127-133, 2005
    Lopez M. A., Serna F. J. Z. D. de la, Jan-Roblero J., Romero J. M. and Hernandez-Rodriguez C., Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiol Ecol., 58, 145-154, 2006
    Lopez-Cortes A., Schumann P., Pukall R. and Stackebrandt E., Exiguobacterium mexicanum sp. Nov. and Exiguobacterium artemiae sp. Nov., isolated from the brine shrimp Artemia franciscana. Systematic and Applied Microbiology, 29, 183-190, 2006
    Lula R. A., Stainless Steel. Amereican Society for Metals, Ohio, 139-151, 1993
    Maier R. M., Pepper I. L. and Gerba C. P. Environmental Micorobiology. Academic Press, California, 80, 422, 2000
    Nica D., Davis J.L., Kirby L., Zuo G. and Roberts D. J., Isolation and characterization of microoganisms involved in the biodeterioration of concrete in sewers. International Biodeterioration & Biodegradation, 46, 61-68, 2000
    Rittmann B. E. and McCarty P. L. Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York, 208, 2001
    Sarioglu F., Javaherdashti R. and Aksoz N., Corrosion of a drilling pipe steel in an environmental containing sulphate-reducing bacteria. Int. J. Pres. Ves. & Piping, 73, 127-131, 1997
    Singleton P. and Sainsgury D. Dictionary of Microbiology and Molecular Biology, John Wiely & Sons. Ltd., Singapore, 334, 1988

    下載圖示 校內:2008-08-29公開
    校外:2008-08-29公開
    QR CODE