| 研究生: |
湯美華 Tang, Mei-Hua |
|---|---|
| 論文名稱: |
空載光達點雲及地形圖輔助生產
真實正射影像之研究 True Orthoimage Generation Using Airborne Lidar Data and Topographic Maps |
| 指導教授: |
曾義星
Tseng, Yi-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 建物模型 、空載光達 、DSM 、真實正射影像 |
| 外文關鍵詞: | True Orthoimage, DSM, Airborne Lidar, Building Model |
| 相關次數: | 點閱:144 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
垂直平行投影獲得之真實正射影像,可以展示物體的正確位置與形狀,為具有圖面量測性質的資料。除了圖面量度外,豐富的地表影像資訊還可應用於GIS視覺分析、河川流域監控等不同的層面。航照影像之正射糾正必須具有地物資訊,才能完全糾正地物之高差移位。相對於DEM,DSM是較合適應用在正射糾正的幾何面。空載光達點雲具有地物及地表的三維坐標資料,有利於DSM的製作,故本研究以空載光達點雲為基礎,探討如何製作符合需求之真實正射影像。
為了要完整糾正航照影像之高差移位,正射糾正所使用的DSM解析度必須要與原始影像相當。基於空載光達可獲得密佈於地表的點位與多重反射的特性,理論上,第一回波的點雲即是DSM觀測點,然而受到空載光達點雲的不規則分佈與足跡造成之建物邊界內縮或外擴的影響,不僅使製作之DSM產生邊界不平整的問題,更會影響正射糾正成果。因此,本文以點雲過濾所獲得之DEM,與數值地形圖之建物邊界線構成的簡易建物模型,結合DEM建物模型進行DSM的製作。經由實際測試,本文所提之方法在建物邊界正確的情形下有效、可行,且能會得良好的糾正成果。
然而,在建物模型的建構中,可能面臨的問題有:(1)建物邊界錯誤(2)建物邊界遺漏(3) 建物變遷。針對第一個問題,本文藉由初步的正射糾正成果,進行邊界線的編修。針對遺漏及變遷問題,本研究提出以航照影像、建物點雲與地形圖獲取建物邊界線的方法。對於萃取之建物邊線可能會帶有錯誤,故仍須藉由初步正射糾正成果的輔助,進行人工檢核與編修,以確保DSM的正確性。此外,在正射糾正過程中,本研究也透過建物模型與成像原理,對航照影像進行遮蔽區之偵測並對遮蔽區加以標記。透過對標記為遮蔽之區域進行影像填補的作業,以製作出具有完整影像資訊之真實正射影像。
The generation of true orthoimages is a procedure to rectify photographs of perspective projection to the images of orthogonal projection. True orthoimages provide correct shape and position of ground objects and correct measurement of angles and distances as a traditional line-based map. Therefore, they can serve as a background of a thematic map and as a means to developing and updating thematic maps. True orthoimages can be applied in many fields, such as city planning and river basin monitoring, etc. Complete correction of relief displacement for true orthoimages generation should be done bases on digital surface model (DSM), rather than digital elevation model (DEM). Airborne Lidar is a highly efficient and accurate method to obtain data for determination the spatial data of the topographic surface. This paper investigates the benefits of using Lidar data for true orthoimages generation.
In order to acquire qualified true orthoimages, the resolution of DSM should be equivalent to the resolution of aerial photographs. To prevent from jagged edges of DSM generated by first return of airborne Lidar data, combining DEM and DBM to form DSM is more preferable. In this paper, DEM is generated from Lidar data by filtering out the non-ground points and DBM is obtained by using building boundaries of topographic map and Lidar point on the roof. Experiments on some test data reveal several problems: (1) incorrect building boundaries (2) missing of building boundaries (3) new buildings not shown in topographic map. Manually modifying the incorrect DBM is usually needed to cope with the first problem. For the missing part or new buildings, one could digitize the new building boundaries on the aerial images to update the topographic map.
In urban area there are inevitable hidden areas which contain no information of the occluded areas. The presence of hidden areas results in double mapping effects on true orthoimages. Refinements are needed for the hidden areas to make true orthoimages look reasonable. The detection of occluded areas is based on visibility analysis by tracing perspective rays from the top surface back to the perspective center. Those occlusions should be refilled by other available aerial images.
王蜀嘉及曾義星,內政部委託研究計畫報告書,2003。
周富晨,「適應性點雲過濾演算法於空載光達資料生產數值高程模型之研究」,國立成功大學測量與空間資訊學系碩士論文,2004。
Ackermann, F., “Airborne Laser Scanning-Present Status and Future Expectation”, ISPRS Journal of Photogrammetry and Remote Sensing 54(1), pp. 64-67, 1999.
Afek, Y. and A. Brand, “Mosaicking of Orthorectified Aerial Images”, Photogrammetric Engineering and Remote Sensing, Vol. 64, No.2, pp. 115-125, 1998.
Amhar, F., Josef, J., and Ries, C., “The Generation of True Orthophoto Using a 3D Building Model in Conjunction with a Conventional DTM” International Archives of Photogrammetry and Remote Sensing, Vol.32, Part4, pp. 16-22, 1998.
Axelsson, P., “Processing of Laser Scanner Data - Algorithms and Applications”, ISPRS Journal of Photogrammetry and Remote. Sensing, 54(1), pp. 138-147, 1999.
Baltsavias, E., “A Comparison between Photogrammetry and. Laser Scanning”, ISPRS Journal of Photogrammetry and Remote. Sensing, 54(1), pp. 83-94, 1999.
Biasion, A., Dequal, S. and Lingua, A., “A New Procedure for the Automatic Production of True Orthophotos”, ISPRS Commission Ⅳ, pp. 538-543, 2004.
Boccardo, P., and Comoglio, G., “New Methodologies for Architectural Photogrammetric Survey”, International Archives of Photogrammetry and Remote Sensing, Vol.33, Part B5/1, 2000.
Chen, L. C. and Lee, L. H. , “Rigorous Generation of Digital Orthophotos from SPOT Images” Photogrammetric Engineering and Remote Sensing, Vol.59, No.5, pp.655-661,1993.
Cobby, D.M., Mason, D.C. ,and Davenport, I.J. , “Image Processing of Airborne Scanning Laser Altimetry Data for Improved River Flood Modeling”, ISPRS Journal of Photogrammetry and Remote Sensing, 56, 121-138,2001.
Deng F., Zhang, Z., and Zhang, J, “Construction 3D Urban Model from Lidar and Image Sequence”, Proceedings of the 20th ISPRS Congress, Istanbul, Turkey, 2004.
Ecker, R., “Digital Orthophoto Generation based on a high-quality DTM” ITC Journal, pp59-64, 1992.
Ecker, R., Kalliany, R., and Otepka, G., “High Quality Rectification and Image Enhancement Techniques for Digital Orthophoto Production”, Photogrammetric Week '93, pp. 143-155, 1993.
Ettarid, M., M’hand, A. A., and Morocco, R. A. , “Digital True Orthophotos Generation”, FIG Working Week 2005 and GSDI-8, TS27.5, 2005.
Fradkin, M. and Ethrog, U., “Feature Matching for Automatic Generation of Distortionless Digital Orthophoto”, Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision Ⅲ, Proceeding SPIE, Vol. 3072, pp. 153-164, 1997.
Fritsch, D. and Kilian, J., “Filtering and Calibration of Laser Scanner Measurements”, International Archives of Photogrammetry and Remote Sensing, 30(3), 227-234, 1994.
Frueh, C., Zakhor, A.:“ Constructing 3D city models by Merging Ground-based and Airborne views”, IEEE Conference on Computer Vision and Pattern Recognition, vol. II, Madison, USA, pp. 562—569,2003.
Frueh, C., Sammon, R. and Zakhor, A, “Automated Texture Mapping of 3D City Model with oblique Aerial Imagery”, 3DPVT, pp.396-403, 2004.
Haala, N., “Detection of Building by Fusion of Range and Image Data”, International Archives of Photogrammetry and Remote Sensing 30(3), 341-346, 1994.
Haala, N., and Anders, K. H., “Acquisition of 3D Urban Models by Analysis of Aerial Image, Digital Surface Models and Existing 2D Building Information. ”, Integrating Photogrammetric Technique with Scene Analysis and Machine Vision Ⅲ,Vol.3072, pp.212-222,1997.
Haala, N., Brenner, C., and Anders, K.-H.:” Generation of 3D. City Models from Digital Surface Models and 2D GIS”, ISPRS Workshop on 3D Reconstruction and Modeling of Topographic. Objects, IAPRS Vol. 32 3-4W2, Stuttgart, Germany’, pages 68–76, 1997.
Haala, N.:” Combining multiple Data Sources for Urban Data. Acquisition”, Photogrammetric Week, Stuttgart, Wichmann, pp. 329-339, 1999.
Haala, N. and Brenner, C., “Extraction of Buildings and Trees in Urban Environments”, ISPRS Journal of. Photogrammetry and Remote Sensing, 54: 130-137, 1999.
Hofmann, O., Ebner, H., and Nave, P.:”DPS-A Digital Photogrammetry System for Production Digital Elevation Models and Orthophotos by Means of Linear-Array Scanner Imagery”, PE&RS, Vol. 50, pp. 1135-1142, 1984.
Höhle, J., “Experiences with the Production of Digital Orthophotos”, Photogrammetric Engineering and Remote Sensing, Vol. 62, No.10, pp1189-1194, 1996.
Hood, J., Ladner, L., and Champion, R.:” Image Processing Technique for Digital Orthophotoquad Production”, PE&RS, 55(9):1323-1329, 1989.
Jensen, R. J., “Introductory Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 379 P, 1986.
Keating, T.J., and Boston, D. R.:” Digital Orthophoto Production Using Scanning Microdensitometers”, Photogrammetric Engineering and Remote Sensing, Vol. 45, No. 6, pp. 735- 740, 1979.
Kim T., Shin, D. and Lee, Y. R., “Development of Robust Algorithm for transformation of a 3D Object Point onto a 2D Image Point for Linear Pushbroom Imagery”, Photogrammetric Engineering and Remote Sensing, Vol.67 No.4.April, pp449-452,2001.
Kraus, K., and Pfeifer, N., “Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data”, ISPRS Journal of Photogrammetry and Remote Sensing 53(4), pp. 193-203, 1998.
Lemmens, M., Deijkers, H. ,and Looman, P., “Building Detection by Fusing Airborne Laser-altimeter DEMs and 2D Digital Map”, International Archives of Photogrammetry and Remote Sensing 32(3-4w2),pp. 42-49,1997.
Lloyd, C. D. and Atkinson, P. M., “Deriving DSMs from Lidar Data with Kriging”, International Journal of Remote Sensing, Volume 23, pp. 2519-2524, 2002.
Mass, H. G., and Vosselman, G.:” Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data”, ISPRS Journal of Photogrammetry & Remote Sensing, 54, pp. 153-163, 1999.
Mayr, W. and Heipke, C.:”A Contribution to Digital Orthophoto Generation”, International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, 27(B11), Ⅳ, pp.430-439, 1988.
McGlone, C., Mikhail, E.M., and Bethel, J., “Manual of Digital Photogrammetry, 5th Edition”, Bethesda, MD: American Society for Photogrammetry and Remote Sensing, 2004.
McIntosh, K. and Krupnik, A., “Integration of Laser-derived DSMs and matched Image Edges for Generating an Accurate Surface Model”, Photogrammetry & Remote Sensing, Vol. 56, No. 3, pp. 167-176,2002.
Oda, K., Lu, W., Uchida, O. and Doihara, T., “Triangle-based Visibility Analysis and True Orthoimage Generation”. Int. Arch. Photogrammetry, Remote Sensing and Spatial Information, Vol.35 (3):623-628, 2004.
O’Neill, M. A., and Dowman, I. J., “The Generation of Epipolar Synthetic Stereo Mates for Spot Images Using a DEM”, International Archives of Photogrammetry and Remote sensing, Kyoto,Japan,27(B3),587-598,1988.
Petzold, B., Reiss, P., and Stössel, W.:” Laser Scanning - Surveying and Mapping Agencies are Using a New Technique for the Derivation of Digital Terrain Models”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, pp. 95-104,1999.
Rau, J. Y. and Chen, L. C., “Digital Orthoimage Generation from Large-Scale Aerial Photography” Proceedings of the 20th Asian Conference on Remote Sensing, pp. 707-712, 1999.
Rau, J. Y., Chen, N. Y., and Chen, L. C., “Hidden Compensation and Shadow Enhancement for True Orthophoto Generation”, Proceedings of the 21st Asian Conference on Remote Sensing, Vol.1, pp. 112-118, 2000.
Rau, J. Y., and Chen, L. C., “True Orthophoto Generation of Built-Up Areas Using Multi-View Images”, Photogrammetric Engineering and Remote Sensing, Vol. 68, No. 6, pp. 581-588, 2002.
Schickler, M. and Thorpe, A., “Operarional Procedure for Automatic True Orthophoto Generation”, International Archives of Photogrammetry and Remote Sensing, Vol.32 (Part4), pp.527-532, 1998.
Schnek, T., Csathó, B. and Lee, D. C., “Quality Control Issues of Airborne Laser Ranging Data and Accuracy Study in an Urban Area”, IAPRS 32(3W14),pp. 101-108,1999.
Sheng, Y., Gong, P. and Biging, G. S., “True Orthoimage Production for Forested Areas from Large-scale Arial photographs. “, Photogrammetric Engineering and Remote Sensing, Vol. 69 No.3, pp.259-266, 2003.
Skarlatos, D., “Orthophotograph Production in Urban Areas”, Photogrammetric Record, Vol. 16, No. 94, pp643-650, 1999.
Steinle, E., Kiema, J., Leebmann, J. and Bähr, H.-P.:” Laserscanning for Analysis of Damages Caused by Earthquake. Hazards”, OEEPE Workshop on Airborne. Laserscaning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 88-99, 2001.
Toni Schenk and Bea Csathó. Fusion of Lidar data and aerial imagery for a more complete surface description”, ISPRS Commission Ⅲ (6), pp.310-317, 2002.
Vosselman, G., “Slope Based Filtering of Laser Altimetry Data”, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 935-942, 2000.
Wiesel, J. W., “Digital Image Processing for Orthophoto Generation”, Photgrammetria, 40(2), pp.69-76, 1985