簡易檢索 / 詳目顯示

研究生: 曾品齊
Tseng, Pin-Chi
論文名稱: 匿蹤戰機尾翼外型設計在不同馬赫數下之空氣動力性能模擬分析
Investigation of Aerodynamic Characteristics for Stealth Fighter Tail Configuration Design under Various Mach Numbers by using Numerical Analysis
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 空氣動力學計算流體力學F-22匿蹤戰機V型尾翼
外文關鍵詞: Aerodynamics, Computational Fluid Dynamic, F-22 Stealth Fighter, V-tail
相關次數: 點閱:76下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以F-22匿蹤戰鬥機為研究目標,對F-22匿蹤戰鬥機體外型進行空氣動力(Aerodynamics)之計算和分析,並將傳統尾翼設計改為V型尾翼布局,探討其氣動力性能差異,嘗試研究國外先進飛行器設計,建立匿蹤戰鬥機分析方法及提供我國下一代匿蹤戰鬥機設計參考。本研究將F-22全機建模後,運用商業套裝軟體ANSYS FLUENT進行F-22氣動力外型之外部流場穿音速及超音速之數值模擬。數值研究上使用ANSYS FLUENT高階數值方法,求解穩態可壓縮流那威爾-史托克方程式(Navier-Stokes equations),以探討F-22空氣動力特性。在紊流模型上,採用SST (Shear-Stress Transport) k-w Model紊流模型。計算網格由ANSYS Meshing產生非結構性網格,搭載混合型網格,於機身壁面周圍建立菱柱型網格(Prism Mesh)以模擬邊界層黏性流場,其他計算領域則使用四面體及六面體網格(Tetrahedron & Hexahedron Mesh),分析模擬結果之升力係數、阻力係數及各項力矩係數之關係,並進一步探討在偏轉控制面後之性能差異。本研究探討F-22原型機(baseline)及其V型尾翼(V-tail)外傾角45°、60° 及75°空氣動力,其中在穿音速及超音速中F-22原型機與V型尾翼三種外傾角外型在高攻角時出現明顯升力、阻力及俯仰力矩之差異。雖升阻比則在各攻角皆極為相似。在超音速中偏轉升降舵及方向舵可發現新型F-22 V型尾翼β=45°及β=60°外形設計,雖在高攻角時會產生較高之正向俯仰力矩,但在偏航(Yawing moment)時表現較高之效率,若配合控制面轉動,亦能符合飛控穩定之要求,其次不管在穿音速及超音速飛行中皆提供較小之阻力,前世代之飛機要求高升力,而隨著發動機技術的成熟及先進的發展,慢慢轉變為利用速度換取升力,而降低阻力則為最經濟且實際之目標。綜合以上空氣動力分析,本研究建議下一代匿蹤戰機未來可使用V型尾翼布局,外傾角約落於β=45°至60°之間具有良好之空氣動力性能,不論在超音速巡航及飛行操控上皆有較好空優性能。

    This study proposes a study of F-22 stealth fighter by analyzing its aerodynamic performance. In additional to learn how F-22 performance is, this study modifies the tail configuration from conventional arrangement to V-tail to investigate the difference in aerodynamic performance. After F-22 full-body surface mesh modeling, one can simulate flow field around F-22 under transonic and supersonic flight conditions, and analyze the lift, drag and moment coefficients, as well as flow field of F-22 fighter at high angle of attack. High-order numerical method to solve Navier-Stokes equation is applied to investigate flow field characteristics of F-22. About turbulence model, SST (Shear-Stress Transport) k-w model is used. In this study, the original model (baseline) and the V-tail configurations with three tilt angles β = 45°, 60° and 75° were established respectively. Major differences in lift, drag and pitching moment are found at high angle of attack. The lift to drag ratio is very similar at all angles of attack under transonic and supersonic. The V-tail with tilt angles β = 45° & 60° show the outstanding flight control performance under supersonic when the elevator and rudder deflection. Besides pitching moment, V-tail with tilt angle β = 45° & 60° have high efficiency during yawing, and lower drag under both transonic and supersonic speed. Based on the above aerodynamic analysis in this study that V-tail configuration is suggested for the next generation stealth fighter design. The V-tail tilt angle should be between β=45°and 60° that will have superior aerodynamic performance during supersonic cruise.

    摘要 I Extended Abstract III 致謝 XII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號說明 XXV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 12 第二章 研究方法與程式驗證 16 2.1 數值分析軟體FLUENT簡介 16 2.1.1 FLUENT之特點 16 2.1.2 FLUENT求解流程 17 2.2 統御方程式(Governing Equation) 19 2.3 紊流模型(Turbulence Model) 21 2.3.1 S-A (Spalart-Allmaras) Model 21 2.3.2 SST (Shear-Stress Transport) k-w Model 22 2.4 基本無因次參數定義 26 2.5 ONERA M6 機翼穿音速流場之模擬驗證 28 2.6 DLR-F6 Wing-Body 全機穿音速流場之模擬驗證 33 2.7 F-16 C Baseline 全機超音速流場之模擬驗證 39 2.8 網格生成 42 2.9 邊界條件設定 45 2.10 網格獨立性分析 46 第三章 F-22戰機外型設計參數 48 3.1 機翼幾何外型 48 3.2 控制面設計 50 3.3 全機幾何外型建製 50 3.4 坐標系統定義 59 第四章 結果與討論 60 4.1 穿音速飛行時不同外型之空氣動力性能差異分析 62 4.2 超音速飛行時不同外型之空氣動力性能差異分析 72 4.3 超音速飛行時不同外型尾翼偏轉控制面角度之俯仰力矩差異分析 83 4.4 超音速飛行時不同外型尾翼偏轉之偏航力矩差異分析 90 第五章 結論 99 5.1 總結 99 5.2 未來工作 100 參考文獻 101 附錄A 馬赫數M=0.9且不同攻角之四種外型上下表面壓力分佈圖 104 附錄B 馬赫數M=1.6且不同攻角之四種外型上下表面壓力分佈圖 116

    【1】 M. Clark, W. Bernens, “High Angle-of-Attack Flight Characteristics of the YF-22”, AIAA Paper 91-3194, 1991.
    【2】 R. H. Barnard, D. R. Philpott, “10. Aircraft control”, Aircraft Flight (4th ed.). Harlow, England: Prentice Hall. p. 275, 2010.
    【3】 S. Gudmundsson, “General Aviation Aircraft Design: Applied Methods and Procedures” (Reprint). Butterworth-Heinemann. p. 489, 2013.
    【4】 S. P. LeMay, J. A. Lovato, "Experimental Investigation of the Vortex-Vertical Tail Interaction on an F-15", AIAA 94-0700, Jan. 1994.
    【5】 G. H. Shah, "Wind-Tunnel Investigation of Aerodynamic and Tail Buffet Characteristics of Leading-Edge Extension Modifications to the F/A-18", AIAA Atmospheric Flight Mechanics Conference, AIAA 91-2889, New Orleans, LA, August 12-14, 1991.
    【6】 S. Zheng, G. S. Li, G. P. Cai, and H. S. ANG, "A study on the effects of the twin-tails on the lift of a LEX-wing configuration at high AOA", Acta Aerodynamica Sinica, Vol.29, No.2, April, 2011.
    【7】 M. C. Fox, D. K. Forrest, "Supersonic Aerodynamic Characteristics of an Advanced F-16 Derivative Aircraft Configuration", NASA-TP-3355, June, 1993.
    【8】 V. Schmitt, F. Charpin, “Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers, Experimental Data Base for Computer Program Assessment”, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May, 1979.
    【9】 O. Broderson, A. Stürmer, “Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations”, 19th AIAA Applied Aerodynamics Conference, Anaheim, California, June, 2001.
    【10】 陳震宇, 匿蹤戰機外型設計對雷達散射截面之模擬分析, 國立成功大學航空太空工程研究所碩士論文, 2020
    【11】 姜浩, F-35戰鬥機三維重建及氣動隱身特性分析, 南京航空航天大學, 2010
    【12】 Wikipedia Encyclopedia. https://en.wikipedia.org/w/index.php?title=Northrop_YF-23&oldid=968410764
    【13】 Retrieved July 20, 2020, from https://twitter.com/FASTmuseum/status/918522691015118848/photo/1
    【14】 Wikipedia Encyclopedia. https://en.wikipedia.org/w/index.php?title=Beechcraft_Bonanza&oldid=974062575
    【15】 Wikipedia Encyclopedia. https://en.wikipedia.org/w/index.php?title=Lockheed_F-117_Nighthawk&oldid=972213548
    【16】 Wikipedia Encyclopedia. https://en.wikipedia.org/w/index.php?title=F-X_(Japan)&oldid=972211495
    【17】 Retrieved July 20, 2020, from https://theaviationist.com/2019/06/18/dassault-and-airbus-fcas-6th-generation-fighter-mockup-unveiled-at-the-paris-air-show/
    【18】 Retrieved July 20, 2020, from https://www.flightglobal.com/military-uavs/boeing-rolls-out-airpower-teaming-system-for-royal-australian-air-force/138219.article
    【19】 Retrieved July 20, 2020, from https://www.pngfind.com/mpng/ibJwbo_f22-raptor-diagram-aircraft-pinterest-aircraft-fighter-f/

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE