簡易檢索 / 詳目顯示

研究生: 李家穎
Li, Chia-Ying
論文名稱: 以磁控濺鍍法沉積氧化錫鋅薄膜及其紫外光光電元件之 研究
Investigation of Zinc Tin Oxide Thin Films and Their UV Optoelectrical Devices Fabricated by RF Sputtering
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 107
中文關鍵詞: 氧化錫鋅光感測器薄膜電晶體光電晶體
外文關鍵詞: Zinc tin oxide, Photodetector, Thin film transistor, Phototransistor
相關次數: 點閱:77下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文透過射頻磁控濺鍍法沉積之氧化錫鋅薄膜,討論不同製程參數下的薄膜特性,分析其影響並將其套用在紫外光電元件上,其中包括了紫外光感測器以及薄膜電晶體。
    第一部分,我們利用射頻磁控濺鍍來沉積氧化錫鋅薄膜,在沉積的過程中,調整不同氧氣與氬氣的通入比例,並在沉積完成後進行退火,以得到不同特性的薄膜,將這些薄膜進行結構分析、光學分析、和材料分析。結構分析中,可以觀察到所有氧化錫鋅薄膜都呈現非晶的狀態,且不同氧通量的薄膜都有非常均勻的表面,粗糙度方均根均小於0.65奈米,而經過退火的薄膜,在退火溫度上升時,表面粗糙度會下降,證實退火會改善表面的缺陷。在光學分析中,所有薄膜都非常透明,可見光區的平均穿透率都大於80%,不會受退火溫度以及氧通量的影響。而材料分析中,X射線光電子能譜可以觀察到,當氧通量上升的同時,氧空缺的比例會隨著下降,而退火的薄膜,在退火溫度上升的時候,氧空缺也有明顯的下降趨勢。
    第二部分,我們利用射頻磁控濺鍍法來製備氧化錫鋅之光感測器,以不同的氧通量以及退火溫度當作製程的參數,分別是0%、4%、10%的氧氣比例,以及攝氏150度、200度,製備的元件在氧通量為0%的時候呈現歐姆型態的特性,4%跟10%呈現蕭基型態的特性,當光感測器經過退火的流程後,能夠提升光電流及暗電流,且增強了光響應,但也使得4%進行200度退火的光感測器變成了歐姆型態。我們也發現當氧通量比例上升時,時間響應會因此減少。最後我們得到氧通量比例10%並進行攝氏200度真空退火一小時的光感測器有最好的表現,光暗電流比為1.61×10^2,響應值9.72×10^(-6) (A/W),響應拒斥比1.59×10^2,開關時間分別為 1.03秒及1.02秒。
    第三部分,以磁控濺鍍的方式來製作氧化錫鋅薄膜電晶體,透過控制氧通量的比例,以改變自由載子和缺陷的數量,藉以改善薄膜電晶體的電特性。在真空退火後,薄膜電晶體也因為原子的重新排列與金屬和氧的鍵結增強使得電性獲得了改善,得到了氧通量4% 退火500度一小時的薄膜電晶體為最佳參數,臨界電壓為3.224(V),場效電子遷移率為4.744(cm^2⁄Vs),開關電流比為9.85×10^7,次臨界擺幅為0.499 (V⁄decade)。接著,我們也製作出了氧化錫鋅的光電晶體,響應拒斥比為 1.19×10^6,但其時間響應未達到理想的值,呈現與歐姆型態的光感測器一樣的結果,無法在短時間內完成開關的動作 。

    This study focuses on the deposition of Zn2SnO4 thin films using radio-frequency magnetron sputtering. The thin film characteristics under different process parameters are investigated, and their application in ultraviolet (UV) photodetection devices, including UV sensors and thin-film transistors, is explored.
    In the first part, Zn2SnO4 thin films are deposited using RF magnetron sputtering. Different ratios of oxygen and argon gases are used during the deposition process, followed by annealing to obtain films with varying properties. Structural analysis, optical analysis, and material analysis are conducted on these films. The structural analysis reveals that all Zn2SnO4 thin films exhibit an amorphous structure, and films with different oxygen fluxes exhibit highly uniform surfaces with root-mean-square roughness of less than 0.65 (nm). The annealed thin films show a decrement in surface roughness with increasing annealing temperature, indicating the improvement of surface defects through annealing. Optical analysis shows that all films exhibit high transparency, with average transmittance in the visible range exceeding 80%, and the transparency is unaffected by annealing temperature and oxygen flux. Material analysis using X-ray photoelectron spectroscopy reveals that as the oxygen flux increases, the proportion of oxygen vacancies decreases, and annealed films exhibit a significant reduction in oxygen vacancies with increasing annealing temperature.
    In the second part, we fabricated Zn2SnO4 photodetectors using RF magnetron sputtering. Different oxygen flow ratios and annealing temperatures, specifically 0%, 4%, and 10%, and 150°C and 200°C, were used as process parameters. The devices fabricated with a 0% oxygen flux ratio exhibited Ohmic characteristics, while those with 4% and 10% ratios showed Schottky characteristics. After the annealing process, the photodetectors exhibited improved photo current, dark current, and responsivity, except for the 4% oxygen flow ratio device annealed at 200°C, which changed to ohmic characteristics. It was observed that the time response decreased with increasing oxygen flow ratio. Ultimately, the best-performing photodetector was achieved using a 10% oxygen flow ratio and annealing at 200°C for one hour, with a photo-to-dark current ratio of 1.61×10^2, a responsivity of 9.72×10^(-6) (A/W), a rejection ratio of 1.59×10^2, and rising and falling time of 1.03 (seconds) and 1.02 (seconds), respectively.
    In the third part, Zn2SnO4 thin-film transistors (TFTs) were fabricated using RF sputtering. Different oxygen flow ratios can control the number of free carriers and defects and improve the electrical properties of the TFTs. After annealing, the rearrangement of atoms and enhanced bonding between metal and oxygen led to improved electrical properties of the TFTs. The optimized parameters for the fabricated TFT was a 4% oxygen flow ratio and annealing at 500°C for one hour, resulting in a threshold voltage of 3.224 (V), a field-effect mobility of 4.744 (cm^2⁄Vs), an on-off ratio of 9.85×10^7, and a subthreshold swing of 0.499 (V⁄decade). In addition, Zn2SnO4 phototransistors were fabricated, exhibiting a rejection ratio of 1.19×10^6. However, their time-resolved response didn't reach the desired value, showing similar results to the Ohmic characteristics photodetectors, indicating an inability to complete the switching operation within a short period.

    摘要 I Abstract IV 致謝 VII Contents IX Table Captions XIII Figure Captions XIV Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Overview of Zn_2 SnO_4 Material 2 1.3 Organization of this thesis 4 Reference 6 Chapter 2. Relevant Theory and Experimental Equipment 11 2.1 Theory of Photodetector 11 2.1.1 Photo to Dark Current Ratio (PDCR) 12 2.1.2 Responsivity (R) 12 2.2 Theory of Thin Film Transistor 13 2.2.1 On/Off Current Ratio (I_On/I_Off) 15 2.2.2 Threshold Voltage (V_th) 15 2.2.3 Subthreshold Swing (SS) 16 2.2.4 Field Effect Mobility (μ_FE) 16 2.2.5 Interface Trap Density (N_it) 17 2.3 Experimental Equipment 17 2.3.1 Thermal Evaporation system 17 2.3.2 Radio-frequency Sputtering System 17 2.3.3 Plasma-enhanced Chemical Vapor Deposition (PECVD) 20 2.3.4 X-ray Diffraction (XRD) 21 2.3.5 X-ray Photoelectron Spectroscopy (XPS) 23 2.3.6 Atomic Force Microscopes (AFM) 24 2.3.7 Energy-Dispersive X-ray Spectroscopy (EDS) 24 2.3.8 UV-VIS-NIR Spectrophotometer 24 2.3.9 Measurement Systems 25 Reference 26 Chapter 3. Characteristics of 〖Zn〗_2 SnO_4 Thin Film 27 3.1 Growth of Zn_2 SnO_4 Thin Film 27 3.2 Structural Characteristics 28 3.2.1 X-ray Diffraction (XRD) Analysis 28 3.2.2 Atomic Force Microscopes (AFM) Analysis 30 3.3 Optical Characteristics 32 3.4 Elemental Analysis 34 3.4.1 X-ray Photoelectron Spectroscopy (XPS) Analysis 34 Reference 40 Chapter 4. The fabrication and characteristics of 〖Zn〗_2 SnO_4 MSM UV photodetectors 41 4.1 Motivation 41 4.2 Fabrication of Zn_2 SnO_4 MSM Photodetectors 42 4.3 Characteristics of Zn_2 SnO_4 MSM Photodetectors 43 4.3.1 Characteristics of Different Oxygen flow Ratios of Zn_2 SnO_4 MSM Photodetectors 43 4.3.2 Characteristics of Different annealed temperature of Zn_2 SnO_4 MSM Photodetectors 48 4.3.3 Time-Resolved Response of Zn_2 SnO_4 MSM Photodetectors 57 4.4 Structural Characteristics and Elemental Analysis of Zn_2 SnO_4 Photodetectors 62 4.4.1 Transmission Electron Microscopy (TEM) Analysis 62 4.4.2 Energy Dispersive Spectra (EDS) Analysis 64 4.5 Summary 68 Reference 69 Chapter 5. The Fabrication and Characteristics of 〖Zn〗_2 SnO_4 Thin Film Transistors 73 5.1 Motivation 73 5.2 Fabrication of Zn_2 SnO_4 Thin Film Transistors 74 5.3 Structural Characteristics and Elemental Analysis of Zn_2 SnO_4 Thin Film Transistors 75 5.3.1 Transmission Electron Microscopy (TEM) Analysis 75 5.3.2 Energy Dispersive Spectra (EDS) Analysis 78 5.4 Characteristics of Zn_2 SnO_4 Thin Film Transistors 81 5.4.1 Characteristics of Different Oxygen Flow Ratios of Zn_2 SnO_4 Thin Film Transistors 81 5.4.2 Characteristics of Different Annealed temperature of Zn_2 SnO_4 Thin Film Transistors 86 5.5 Characteristics of Zn_2 SnO_4Thin Film Phototransistors 93 5.5.1 I-V Characteristics of Zn_2 SnO_4 Thin Film Phototransistors 93 5.5.2 Time-Resolved Response of Zn_2 SnO_4 Thin Film Phototransistors 97 5.6 Summary 99 Reference 100 Chapter 6. Conclusion and Future Work 103 6.1 Conclusion 103 6.2 Future Work 105 Reference 107

    [1] Liu, L. C., Chen, J. S., & Jeng, J. S. (2014). Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors. Applied Physics Letters, 105(2). https://doi.org/10.1063/1.4890579
    [2] Yang, P., Cai, G., Wang, X., & Pei, Y. (2019). Electrolyte-Gated Indium Oxide Thin Film Transistor Based Biosensor with Low Operation Voltage. IEEE Transactions on Electron Devices, 66(8). https://doi.org/10.1109/TED.2019.2920990
    [3] Shen, L., Pan, X., Zhang, T., Liu, Y., Wang, N., Wang, P., Wang, F., Zhu, G., Wang, J., & Ye, Z. (2022). Improved β-Ga2O3 Solar-Blind Deep-Ultraviolet Thin-Film Transistor Based on Si-Doping. Journal of Electronic Materials, 51(7). https://doi.org/10.1007/s11664-022-09599-3
    [4] Lee, C., Lee, W. Y., Lee, H., Ha, S., Bae, J. H., Kang, I. M., Kang, H., Kim, K., & Jang, J. (2020). Sol-gel processed yttrium-doped SnO2 thin film transistors. Electronics (Switzerland), 9(2). https://doi.org/10.3390/electronics9020254
    [5] Pan, Z., Peng, W., Li, F., & He, Y. (2018). Carrier concentration-dependent piezotronic and piezo-phototronic effects in ZnO thin-film transistor. Nano Energy, 49. https://doi.org/10.1016/j.nanoen.2018.05.005
    [6] Huang, W.-L., Hsu, M.-H., Chang, S.-P., Chang, S.-J., & Chiou, Y.-Z. (2019). Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application. ECS Journal of Solid State Science and Technology, 8(7). https://doi.org/10.1149/2.0251907jss
    [7] Shen, C. K., Chaurasiya, R., Chen, K. T., & Chen, J. S. (2022). Synaptic Emulation via Ferroelectric P(VDF-TrFE) Reinforced Charge Trapping/Detrapping in Zinc-Tin Oxide Transistor. ACS Applied Materials and Interfaces, 14(14). https://doi.org/10.1021/acsami.2c03066
    [8] Hara, Y., Kikuchi, T., Kitagawa, H., Morinaga, J., Ohgami, H., Imai, H., Daitoh, T., & Matsuo, T. (2018). IGZO-TFT technology for large-screen 8K display. Journal of the Society for Information Display, 26(3). https://doi.org/10.1002/jsid.648
    [9] Nakano, S., Saito, N., Miura, K., Sakano, T., Ueda, T., Sugi, K., Yamaguchi, H., Amemiya, I., Hiramatsu, M., & Ishida, A. (2012). Highly reliable a-IGZO TFTs on a plastic substrate for flexible AMOLED displays. Journal of the Society for Information Display, 20(9). https://doi.org/10.1002/jsid.111
    [10] Nunes, P., Fortunato, E., Tonello, P., Braz Fernandes, F., Vilarinho, P., & Martins, R. (2002). Effect of different dopant elements on the properties of ZnO thin films. Vacuum, 64(3–4). https://doi.org/10.1016/S0042-207X(01)00322-0
    [11] Chongsri, K., Bangbai, C., Techitdheera, W., & Pecharapa, W. (2013). Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films. Energy Procedia, 34, 721–727. https://doi.org/10.1016/J.EGYPRO.2013.06.805
    [12] Sung, N. E., Lee, H. K., Chae, K. H., Singh, J. P., & Lee, I. J. (2017). Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films. Journal of Applied Physics, 122(8). https://doi.org/10.1063/1.5000138
    [13] Lee, C. G., Dutta, S., & Dodabalapur, A. (2010). Solution-processed ZTO TFTs with recessed gate and low operating voltage. IEEE Electron Device Letters, 31(12). https://doi.org/10.1109/LED.2010.2081659
    [14] Heo, J., Kim, S. B., & Gordon, R. G. (2012). Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors. Applied Physics Letters, 101(11). https://doi.org/10.1063/1.4752727
    [15] Kim, D., Jeong, Y., Song, K., Park, S. K., Cao, G., & Moon, J. (2009). Inkjet-printed zinc tin oxide thin-film transistor. Langmuir, 25(18). https://doi.org/10.1021/la901436p
    [16] Jiang, Q., Wu, C., Feng, L., Gong, L., Ye, Z., & Lu, J. (2015). High-response of amorphous ZnSnO sensors for ultraviolet and ethanol detections. Applied Surface Science, 357. https://doi.org/10.1016/j.apsusc.2015.09.253
    [17] Jayaraj, M. K., Saji, K. J., Nomura, K., Kamiya, T., & Hosono, H. (2008). Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26(2). https://doi.org/10.1116/1.2839860
    [18] Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Uratani, F., & Yotsuya, T. (2005). Influence of oxygen flow ratio on properties of Zn2SnO 4 thin films deposited by RF magnetron sputtering. Japanese Journal of Applied Physics, Part 2: Letters, 44(1–7). https://doi.org/10.1143/JJAP.44.L34
    [19] Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2007). ZnO - nanostructures, defects, and devices. Materials Today, 10(5). https://doi.org/10.1016/S1369-7021(07)70078-0
    [20] Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doǧan, S., Avrutin, V., Cho, S. J., & Morko̧, H. (2005). A comprehensive review of ZnO materials and devices. In Journal of Applied Physics (Vol. 98, Issue 4). https://doi.org/10.1063/1.1992666
    [21] Kayaci, Fatma et al. “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density.” Nanoscale 6 17 (2014): 10224-34 . https://doi.org/10.1039/C4NR01887G
    [22] Guo, R., Guo, Y., Duan, H., Li, H., & Liu, H. (2017). Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. ACS Applied Materials and Interfaces, 9(9). https://doi.org/10.1021/acsami.6b16629
    [23] Jeronsia, J. E., Joseph, L. A., Jaculine, M. M., Vinosha, P. A., & Das, S. J. (2016). Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications. Journal of Taibah University for Science, 10(4). https://doi.org/10.1016/j.jtusci.2015.12.003
    [24] Kawazoe, H., & Ueda, K. (1999). Transparent conducting oxides based on the spinel structure. Journal of the American Ceramic Society, 82(12). https://doi.org/10.1111/j.1151-2916.1999.tb02247.x
    [25] Wang, H., Cheng, C., Zhang, L., Liu, H., Zhao, Y., Guo, Y., Hu, W., Yu, G., & Liu, Y. (2014). Inkjet printing short-channel polymer transistors with high-performance and ultrahigh photoresponsivity. Advanced Materials, 26(27). https://doi.org/10.1002/adma.201400697
    [26] Jun, S., Jo, C., Bae, H., Choi, H., Kim, D. H., & Kim, D. M. (2013). Unified subthreshold coupling factor technique for surface potential and subgap density-of-states in amorphous thin film transistors. IEEE Electron Device Letters, 34(5). https://doi.org/10.1109/LED.2013.2248116
    [27] Reynolds, D., Look, D., Jogai, B., & Litton, C. (1998). Neutral-donor-bound-exciton complexes in ZnO crystals. Physical Review B - Condensed Matter and Materials Physics, 57(19). https://doi.org/10.1103/PhysRevB.57.12151
    [28] van der Ziel, A., & Chenette, E. R. (1978). Noise in Solid State Devices. Advances in Electronics and Electron Physics, 46(C), 313–383. https://doi.org/10.1016/S0065-2539(08)60414-X
    [29] Han, S., Zhang, Z., Zhang, J., Wang, L., Zheng, J., Zhao, H., Zhang, Y., Jiang, M., Wang, S., Zhao, D., Shan, C., Li, B., & Shen, D. (2011). Photoconductive gain in solar-blind ultraviolet photodetector based on Mg 0.52Zn 0.48O thin film. Applied Physics Letters, 99(24). https://doi.org/10.1063/1.3670334
    [30] Yun, M. G., Kim, S. H., Ahn, C. H., Cho, S. W., & Cho, H. K. (2013). Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors. Journal of Physics D: Applied Physics, 46(47). https://doi.org/10.1088/0022-3727/46/47/475106
    [31] Mahmoudi Chenari, H., Zamiri, R., Maria Tobaldi, D., Shabani, M., Rebelo, A., Kumar, J. S., Salehizadeh, S. A., Graça, M. P. F., Soares, M. J., António Labrincha, J., & Ferreira, J. M. F. (2017). Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity. Journal of Sol-Gel Science and Technology, 84(2). https://doi.org/10.1007/s10971-017-4484-y
    [32] Yadav, H. K., Sreenivas, K., & Gupta, V. (2007). Enhanced response from metal/ZnO bilayer ultraviolet photodetector. Applied Physics Letters, 90(17). https://doi.org/10.1063/1.2733628
    [33] Wang, W., Pan, X., Dai, W., Zeng, Y., & Ye, Z. (2016). Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector. RSC Advances, 6(39). https://doi.org/10.1039/c6ra02924h
    [34] Tamita Rakshit, Indranil Manna, Samit K. Ray; Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films. Journal of Applied Physics 14 January 2015; 117 (2): 025704. https://doi.org/10.1063/1.4905835
    [35] Ko, J. H., Kim, I. H., Kim, D., Lee, K. S., Lee, T. S., Cheong, B., & Kim, W. M. (2007). Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach. Applied Surface Science, 253(18). https://doi.org/10.1016/j.apsusc.2007.03.036
    [36] Koretomo, D., Hamada, S., Mori, M., Magari, Y., Furuta, M., Furuta, M., & Furuta, M. (2020). Marked improvement in reliability of 150 °c processed IGZO thin-film transistors by applying hydrogenated IGZO as a channel material. Applied Physics Express, 13(7). https://doi.org/10.35848/1882-0786/ab9478
    [37] Kim, J., Park, J., Yoon, G., Khushabu, A., Kim, J. S., Pae, S., Cho, E. C., & Yi, J. (2020). Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Materials Science in Semiconductor Processing, 120. https://doi.org/10.1016/j.mssp.2020.105264
    [38] Stallings, K., Smith, J., Chen, Y., Zeng, L., Wang, B., di Carlo, G., Bedzyk, M. J., Facchetti, A., & Marks, T. J. (2021). Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors. ACS Applied Materials and Interfaces, 13(13). https://doi.org/10.1021/acsami.1c00249
    [39] Yoon, J., Bae, G. Y., Yoo, S., Yoo, J. il, You, N. H., Hong, W. K., & Ko, H. C. (2020). Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. Journal of Alloys and Compounds, 817. https://doi.org/10.1016/j.jallcom.2019.152788
    [40] Huang, C. Y., Peng, T. Y., & Hsieh, W. T. (2020). Realization of a Self-Powered InGaZnO MSM UV Photodetector Using Localized Surface Fluorine Plasma Treatment. ACS Applied Electronic Materials, 2(9). https://doi.org/10.1021/acsaelm.0c00595
    [41] Huang, C. Y., Chen, K. C., & Chang, C. J. (2021). Realization of a self-powered ZnSnO MSM UV photodetector that uses surface state controlled photovoltaic effect. Ceramics International, 47(2). https://doi.org/10.1016/j.ceramint.2020.09.004
    [42] Cheng, B., Xu, J., Ouyang, Z., Su, X., Xiao, Y., & Lei, S. (2014). Individual Ohmic contacted ZnO/Zn2SnO4 radial heterostructured nanowires as photodetectors with a broad-spectral-response: Injection of electrons into/from interface states. Journal of Materials Chemistry C, 2(10). https://doi.org/10.1039/c3tc32059f
    [43] Hu, L., Yan, J., Liao, M., Wu, L., & Fang, X. (2011). Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small, 7(8). https://doi.org/10.1002/smll.201002379
    [44] Wu, P., Zhang, J., Lu, J., Li, X., Wu, C., Sun, R., Feng, L., Jiang, Q., Lu, B., Pan, X., & Ye, Z. (2014). Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Transactions on Electron Devices, 61(5). https://doi.org/10.1109/TED.2014.2312947
    [45] Wang, J., Xiong, Y., Ye, L., Li, W., Qin, G., Ruan, H., Zhang, H., Fang, L., Kong, C., & Li, H. (2021). Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies. Optical Materials, 112. https://doi.org/10.1016/j.optmat.2021.110808
    [46] Wang, J., Xiong, Y., Ye, L., Li, W., Qin, G., Ruan, H., Zhang, H., Fang, L., Kong, C., & Li, H. (2021). Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies. Optical Materials, 112. https://doi.org/10.1016/j.optmat.2021.110808
    [47] Han, Z., Liang, H., Huo, W., Zhu, X., Du, X., & Mei, Z. (2020). Boosted UV Photodetection Performance in Chemically Etched Amorphous Ga2O3 Thin-Film Transistors. Advanced Optical Materials, 8(8). https://doi.org/10.1002/adom.201901833
    [48] Park, K., Kim, J. H., Sung, T., Park, H. W., Baeck, J. H., Bae, J., Park, K. S., Yoon, S., Kang, I., Chung, K. B., Kim, H. S., & Kwon, J. Y. (2019). Highly Reliable Amorphous In-Ga-Zn-O Thin-Film Transistors Through the Addition of Nitrogen Doping. IEEE Transactions on Electron Devices, 66(1). https://doi.org/10.1109/TED.2018.2881799
    [49] Fakhri, M., Johann, H., Görrn, P., & Riedl, T. (2012). Water as origin of hysteresis in zinc tin oxide thin-film transistors. ACS Applied Materials and Interfaces, 4(9). https://doi.org/10.1021/am301308y
    [50] Kim, K., Park, S., Seon, J. B., Lim, K. H., Char, K., Shin, K., & Kim, Y. S. (2011). Patterning of flexible transparent thin-film transistors with solution-processed ZnO using the binary solvent mixture. Advanced Functional Materials, 21(18). https://doi.org/10.1002/adfm.201100323
    [51] Esro, M., Vourlias, G., Somerton, C., Milne, W. I., & Adamopoulos, G. (2015). High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics. Advanced Functional Materials, 25(1). https://doi.org/10.1002/adfm.201402684
    [52] Song, K., Noh, J., Jun, T., Jung, Y., Kang, H. Y., & Moon, J. (2010). Fully flexible solution-deposited ZnO thin-film transistors. Advanced Materials, 22(38). https://doi.org/10.1002/adma.201002163
    [53] Peng, W., He, Y., Wen, C., & Ma, K. (2012). Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer. Sensors and Actuators, A: Physical, 184. https://doi.org/10.1016/j.sna.2012.06.017
    [54] Choi, H., Seo, S., Lee, J. H., Hong, S. H., Song, J., Kim, S., Yim, S. Y., Lee, K., Park, S. J., & Lee, S. (2018). Solution-processed ZnO/SnO2 bilayer ultraviolet phototransistor with high responsivity and fast photoresponse. Journal of Materials Chemistry C, 6(22). https://doi.org/10.1039/c8tc01771a
    [55] Niang, K. M., Cho, J., Sadhanala, A., Milne, W. I., Friend, R. H., & Flewitt, A. J. (2017). Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: Effect of tin composition and annealing temperatures. Physica Status Solidi (A) Applications and Materials Science, 214(2). https://doi.org/10.1002/pssa.201600470
    [56] Niang, K. M., Cho, J., Heffernan, S., Milne, W. I., & Flewitt, A. J. (2016). Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering. Journal of Applied Physics, 120(8). https://doi.org/10.1063/1.4961608
    [57] Han, D. S., Kang, Y. J., Park, J. H., Jeon, H. T., & Park, J. W. (2014). Influence of molybdenum source/drain electrode contact resistance in amorphous zinc-tin-oxide (a-ZTO) thin film transistors. Materials Research Bulletin, 58. https://doi.org/10.1016/j.materresbull.2014.05.009
    [58] Yao, R., Zheng, Z., Xiong, M., Zhang, X., Li, X., Ning, H., Fang, Z., Xie, W., Lu, X., & Peng, J. (2018). Low-temperature fabrication of sputtered high- k HfO2 gate dielectric for flexible a-IGZO thin film transistors. Applied Physics Letters, 112(10). https://doi.org/10.1063/1.5022088
    [59] Zheng, P., Connelly, D., Ding, F., & Liu, T. J. K. (2015). Simulation-Based Study of the Inserted-Oxide FinFET for Future Low-Power System-on-Chip Applications. IEEE Electron Device Letters, 36(8). https://doi.org/10.1109/LED.2015.2438856
    [60] Abbas, S., & Kim, J. (2020). All-metal oxide transparent photodetector for broad responses. Sensors and Actuators, A: Physical, 303. https://doi.org/10.1016/j.sna.2020.111835
    [61] Murali, S., Rajachidambaram, J. S., Han, S. Y., Chang, C. H., Herman, G. S., & Conley, J. F. (2013). Resistive switching in zinc-tin-oxide. Solid-State Electronics, 79. https://doi.org/10.1016/j.sse.2012.06.016
    [62] Huang, C. Y., Yan, C. Y., & Lou, Y. Q. (2022). Dual-functional hybrid ZnSnO/Graphene nanocomposites with applications in high-performance UV photodetectors and ozone gas sensors. Ceramics International, 48(3). https://doi.org/10.1016/j.ceramint.2021.10.131

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE