| 研究生: |
陳安邦 Chen, An-Pang |
|---|---|
| 論文名稱: |
被動式微混合器設計之數值研究 Numerical Investigation of a Passive Micromixer Design |
| 指導教授: |
潘大知
Pan, Dartzi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 分子擴散 、微混合器 |
| 外文關鍵詞: | Micromixer, Molecular Diffusion |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以計算流體力學為工具,以三維T型管為基本構型的混合器,在低雷諾數下以流體擴散原理為混合機制,探討兩流體達到99%混合程度時所需要的管道長度(L99%)、管道俯視面積,及推動流體經過混合器所需的壓力差與T型管的幾何參數之關係。研究結果顯示,減少混合器中流體所需擴散的距離可有效減少L99%。同時,維持T型管主流道的截面積不變可有效降低推動流體所需之壓差。
This study adopts Computation Fluid Dynamics (CFD) as the research tool to study the mixing efficiency of various designs of 3-dimensional T-tube micromixers. The mixer design is based on the principle of molecular diffusion at low Reynolds number flow regime. Taking the length of the tube required for 99% mixing efficiency (L99%), as the principal design parameter, this study discusses the relationship among L99%, the diffusivity, the volume flow rate through the mixer, the cross sectional area of the tube, the hydraulic diameter of the tube, the pressure difference required to drive the flow, and the top view area of the mixer. It is found that keeping a constant cross sectional area is an effective way to prevent the increase of pressure difference across the mixer. It is also found that by reducing the diffusion distance of the mixer, the required L99% can be effectively reduced.
[1] Nguyen, N. T.,and Wu, Z., “Micromixers-a review,” Journal of Micromechanics and Microengineering, NO. 15, R1-R16, 2005.
[2] Glasgow, I., and Aubry, N., “Enhancement of Microfluidic Mixing Using Time Pulsing,” Lab on a Chip, No.3, pp. 114-120, 2003.
[3] 黎康熙, “利用入口脈動流之主動式微混合器研究,” 國立成功大學航空太空研究所碩士論文, 中華民國95年6月.
[4] Wu H. Y., and Liu C. H., “A Novel Electrokinetic Micromixer,” The 12th international Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003﹒
[5] Wu H. Y., and Liu C. H., “A Novel Electrokinetic Micromixer,” The 12th international Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003.
[6] Schwesinger, N., Frank, T., and Wurmus, H., “A Modular micro-fluidic System with an Integrated Micromixer,” Journal of Micromechanics and Microengineering, Vol.6, No.1, pp. 99-102, 1996.
[7] Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Micromixer with Fast Diffusion,” An Investigation of Microstructures, Sensors, Actuators, Machines and Systems. IEEE, pp. 248-283, 1993.
[8] Stroock,A. D., Dertinger, S. K., Ajdar, A., Mezic, L., Stone, H, A. and Whitesides, G. M., “Chaotic Mixer for Microchannel,” Science, Vol. 295, 2002, pp.647-651﹒
[9] Friedhelm, S. and Steffen, H., “Simulation of Helical Flows in Microchannels, ”American Institute of Chemical Engineerings, Vol. 50, No. 4, pp. 771-778, 1996.
[10] Virginie, M., Jacques, J., and Hubert, H. G., “Mixing Processes in a Zigzag Microchannel:Finite Element Simulations and Optical Study,” Analytical Chemistry, No.74, pp. 4279-4286, 2002.
[11] Veenstra, T. T., Lammerink, T.S.J., Elwenspoek, M. C., and Berg, A. V. D., “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” Journal of Micromechanics and Microengineering, No.9, pp. 199-202, 1999.
[12] 廖崇耀﹐“一種依擴散現象而設計之被動式微混合器,” 國立成功大學航空太空研究所碩士論文﹐中華民國96年6月﹒
[13] Frank M. White, “Viscous Fluid Flow,” Third Edition, International Edition 2006﹒