| 研究生: |
許國鋒 Hsu, Kuo-Feng |
|---|---|
| 論文名稱: |
利用金屬反射基板與透明電極結構進行AlGaInP發光二極體外部量子效率改善之研究 Investigation of Improving External Quantum Efficiency by Using Metallic Reflecting Substrate and Transparent Electrode Structure |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 發光二極體 、金屬基板 |
| 外文關鍵詞: | light emitting diode, metallic substrate |
| 相關次數: | 點閱:62 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從有機金屬化學氣相磊晶(MOCVD)技術的快速發展,即被普遍地應用各種材料的磊晶生長,並獲得優良的結晶品質。近年來,化合物半導體的研究發展及應用更是受到各界的矚目,也是當前國家所要全力推動的重點科技項目之一。其中以大量地應用在通訊、照明、交通等方面之磷化鋁鎵銦發光二極體(AlGaInP light emitting diode)為大家所熟知,其發出的光波段則介於可見光區中的紅~黃綠光區。
本文採取磷化鋁鎵銦發光二極體做為試片,目的在於提供一種解決二極體光被GaAs 基板吸收的問題, 原發光二極體的結構為AuBe/GaP/LED/DBR/GaAs , 具有金屬反射基板的結構為Nickel/AuBe/GaP/LED。其中鎳金屬為散熱良好的基板,可解決LED 的散熱問題,此外,更是以此層當做金屬反射鏡,讓LED 所發出的的光可反射回表面. 將先採取化學電鍍的方式形成Nickel/AuBe/GaP/LED/DBR/GaAs, 再使用蝕刻的技術除去GaAs/DBR 兩層,形成Nickel/AuBe/GaP/LED,鎳做為金屬反射基板的結構。
此外, 光的強度正比於電流密度, 我們將透明電極氧化銦鋅(IZO)作為視窗層(window layer)與電流擴散層( c u r r e n t -s p r e a d i n g l a y e r ) 應用在以電鍍技術形成的金屬反射基板磷化鋁鎵銦發光二極體(Nickel/AuBe/GaP/LED/IZO)。藉控制製程參數之氧化銦鋅薄膜具有低的電阻率(<4 × 10-4 Ω-cm)與高穿透率(可見光範圍> 80%)。考慮電流分布的問題,將IZO 應用在樣本表面來有效提昇光的輸出。
在我們的實驗當中,以電鍍法快速成長鎳金屬基板完成了不同的兩種LED 結構的研究和探討,經由實驗証明,我們以化學蝕刻除去GaAs 和DBR 兩層所產生的LED,成功地降低了LED 的位障。而將IZO 應用在LED 上做為電流分布層,也確實發揮了功用,在光的析出方面,IZO 的鍍膜相較於傳統LED 結構來說,其亮度有所改善。對於IZO 薄膜的厚度對於元件特性的影響,在此,我們也做了探討,將導明導電膜應用在LED元件上作了一番嚐試。
Since the technique of metal organic chemical vapor deposition(MOCVD) was quickly developed, was also applied generally to deposit crystal and obtained good crystal quality. Recently, the research and application of chemical composition semiconductor is more look at attentively and is also one of the focal point technique events that country advance spare no effort. Among them, AlGaInP light emitting diode applied on large scale in communication、illumination、traffic etc is to know very well, its luminescence wavelength is red to yellow-green between visible optical spectra.
In this thesis, we choice AlGaInP light emitting diodes as samples to provide a solution that GaAs substrate absorb light, original diode structure is AuBe/GaP/LED/DBR/GaAs, metallic reflecting substrate structure is Nickel/AuBe/GaP/LED. The nickel metal is good thermal conductivity substrate material, it can solve LED heat problem. Besides, it can also treat as metallic reflector, let light reflect to the surface. We will first use chemical electroplating method to form Nickel/AuBe /GaP/LED /DBR/GaAs structure, then use etching technology to remove GaAs/DBR, final form Nickel/AuBe/GaP/LED metallic reflecting substrate structure.
In additional, intensity of light direct ratio current density, we use transparent electrode Indium-Zinc Oxide(IZO) as window layer and current-spreading layer to apply to metallic reflecting substrate AlGaInP light emitting diode(Nickel/AuBe/GaP/LED/IZO). Indium-Zinc oxide film has low resistivity (<4 ×10-4 Ω-cm) and high optical transmission ability(visible light spectra>80%). Consider current spreading problem, we use IZO on sample surface to improve effectively light extraction.
In our experiment, two different LED structures will be fabricated by quick electroplating method, our experiments that LED remove GaAs and DBR layers by chemical etching successful lower barrier high. IZO use to LED as current spreading layer is also to be of help. So we try to use transparent conducting oxide in the LED devices.
參考文獻
[1]Kettel, Introduction to Solid State Physics, Ch4-5
[2]G. B. Stringfellow, M. George Craford, “High Brightness Light Emitting Diodes”, Semiconductors and Semimetals vol48, 3, 1997
[3]Wright, A. F., and Nelson, J. S.(1995). App. Phys. Lett. 66, 3051
[4]D. A. Vanderwater, I. -H. Tan, G. E. Höfler, D. C. Defevere, and F. A. Kish, “Hight-Brightness AlGaInP LightEmitting Diodes”, Proceedings of The IEEE, Vol.85, No. 11. November 1997, 1752-1764
[5]史光國,工業材料148期,pp.149(1999)
[6]K. H. Kish, J. G.Yu, C. P. Kuo, R. M. Flectcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, Appl. Phys.Letter., 58, 1010, 1991
[7]D. A Vanderwater, I. -H. Tan, G. E. Höfler, D. C. Defevere, and F. A. Kish, “Hight-Brightness AlGaInP Light Emitting Diodes”, Proceedings of The IEEE, Vol.85, No. 11. November 1997, 1756
[8]Z. Huang, C. C. Lin, and D. G. Deppe, “Spontaneous Lifetime and Quantum Efficiency in Light Emitting Diode Affected by a Close Metal Mirror”, IEEE Journal of Quantum Electronics, Vol. 29. No. 12. December 1993
[9]J.L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, 9(1977), 1-64
[10]K.L. Chopra, “Growth of Thin Metal Film Under Applied Electric Field”, Applied Physics Letter, Volume 7, Number 5, 1 September 1965, 140-141
[11]David S. Ginley and Clark Bright, Guest Editors, “Transparent Conducting Oxides”, MRS BULLETIN 2000, 15-18
[12]Tadatsugu Miniami“, New n-Type Transparent Conducting Oxides,” MRS BULLETIN 2000, 38-44
[13]A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategie for New Transparent Conducting Oxides”, MRS BULLETIN 2000, 45-51
[14]史光國,現在半導體發光及電射二極體材料技術,Ch3
[15]周以倫,”提高磷化鋁鎵銦發光二極體亮度之研究”,89年
[16]Anchuan Wang, Jiyan Dai, Jizhi Cheng, Michael P. Chudzik, Tobin J. Marks, Robert P. H. Chang, and Carl R. Kannewurf, “Charge transport, optical Transparency, microstructure, and processing relationships in transparent conductive indium-zinc oxide films grown by low-pressure metal-organic chemical vapor deposition”, Appl. Phy. Letters, Vol 73, Number 3, 20 July 1998
[17]陳力俊,微電子材料與製程,p347
[18]Bunshah, Rointan F. Handbook of Depositio Technologies for Films and Coatings: Science, Technology, and Applications, Second Edition. Noyes Publications. New Jersey. 1991
[19]S. B. Phatuk, G. Kelner, “Material-Selective Chemical Etching in the System InGaAsP/InP”, J. Electrochem. Soc., 126-2, 1979, 9. 287
[20]J. W. Lee, S. J. Pearton, C.R. Abernathy, et al, “Wet Chemical Etching of AlInP”, J. Electrochem. Soc., 143-1, 1996, p. L1.
[21]施敏,半導體元件物理與製作技術,192(民國86年)
[22]Dieter k. Schroder, Semiconductor Material and Device Characterization, 138(1998)