| 研究生: |
徐茂軒 Hsu, Mao-Hsuan |
|---|---|
| 論文名稱: |
發展一套甲烷生成菌群定性定量之新型分生技術 A Novel Molecular Assay for Qualitative and Quantitative Analysis of Cultured Methanogens |
| 指導教授: |
吳哲宏
WU, Jer-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 甲烷 、定量分析 、階層引子延伸 、菌群結構分析 |
| 外文關鍵詞: | Methanogen, Quantification, HOPE, Microbial Community Analysis |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近,一項稱為階層寡核甘酸引子延伸(Hierarchical Oligonucleotide Primer Extension, HOPE)新型定性定量分子生物技術的成熟發展,使我們可以針對環境樣本中複雜的微生物社群結構進行高通量的分析。本研究為了建立甲烷菌群結構的HOPE高通量分析平台,根據16S rRNA序列的親緣分析,將已知31屬之甲烷菌在不同的分類階層進行專一性的核甘酸引子(oligoprimer)設計,經測試與最佳化實驗條件共成功獲得28個引子,配裝成7組的多通量分析引子套組,每套分析的通量數可達4-6個目標甲烷菌群。以建立的HOPE平台三重覆分析30個反應槽的厭氧污泥樣本,經22小時的HOPE實驗後,可快速獲知這些樣本中偵測的5個目與23個屬甲烷菌群的相對豐富度數據,而且引子偵測專一性高,分析標準差小於12.2 %,靈敏度低達0.165 %。結果顯示這30種處的厭氧污泥中嗜醋酸及胺類化合物上甲基團的Methanosarcinales目喜好棲息於厭氧污泥環境, 其豐富度在大部份的反應槽污泥中均佔79.3 %以上,其中嗜醋酸的Methanosaeta屬及Methanosarcina屬個別優勢於不同的反應槽污泥。此外,偵測到Methanomethylovorans屬甲烷菌的普遍存在,其相對豐富度達3.85~71.5 %,尤其優勢於處理TFT-LCD廢水反應槽的污泥,顯示是廢水厭氧處理重要的甲烷菌群。另一方面,偵測到的嗜氫甲烷菌有Methanomicrobiales目(6.1~52.5 %)、Methanobacteriales目(3.3~88.7 %)等。由上述結果可知,本研究發展出的HOPE平台可有效地進行反應槽污泥中甲烷菌群結構的定性定量分析,如與其他分生技術如cloning&sequencing、定量PCR搭配運用可快速提供改進反應槽操控所需甲烷菌群多樣性的資訊。本研究建立的HOPE技術與分析策略可推廣應用於研究不同厭氧生物環境中甲烷菌的生態。
In this study, a newly developed molecular method called hierarchical oligonucleotide primer extension, HOPE was optimized to qualitatively and qualitatively analyze the methanogenic Archaea in the sludge from anaerobic reactors treating industrial wastewaters. In total, 28 oligonucleotide primers with specificity at the various hierarchical levels were designed and successfully applied in 7 multiplexing analyses. The HOPE multiple analysis achieved a simultinuous detection of 4-6 targeting methanogenic archaea. After optimization, the assay was used to detect the targeting methanogens in 30 different sludge samples, which triplicate analysis could be completed within xx mins, coming up with the abundance values of 5 orders and 23 genera methanogens with excellent detection specificity, reproducibility (std < 12.2 %) and sensitivity (~0.165 %). The results showed that the detected methanogens by the developed HOPE assay could cover a total abundance of at least 79.3 % in the domain Archaea. It was further observed that the methanogenic populations in the order Methanosarcinales were highly abundant, in which members in the genera of Methanosaeta (<101%)、Methanosarcina (0.8~22.4 %) or Methanomethylovorans (3.85~71.5 %) were the predominant methanogenic populations in the respective anaerobic sludge from bioreactors, showing their important roles in the anaerobic treatment systems. Furthermore, the detected hydrogenotrophic methanogens were Methanomicrobiales(6.1~52.5 %)、Methanobacteriales(3.3~88.7 %).Overall, the established HOPE assay can effectively quantify the methanogens in engineered ecosystems, hence providing valuable information to better improve the performance of anaerobic bioreactors. The encourageing conclusion further suggests that this platform developed in this study may be applicable for samples from other environments.
Abell, G. C. J., M. A. Conlon, and A. L. McOrist. 2006. Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microbial Ecology in Health and Disease 18:154-160.
2. Aiyuk, S., I. Forrez, K. Lieven de, A. van Haandel, and W. Verstraete. 2006. Anaerobic and complementary treatment of domestic sewage in regions with hot climates--a review. Bioresour Technol 97:2225-41.
3. Brauman, A., J. Dore, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane. 2001. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology Ecology 35:27-36.
4. Briee, C., D. Moreira, and P. Lopez-Garcia. 2007. Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213-27.
5. Burke, S. A., and J. A. Krzycki. 1997. Reconstitution of Monomethylamine:Coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem 272:16570-7.
6. Capone, D. G., and R. P. Kiene. 1988. Comparison of Microbial Dynamics in Marine and Freshwater Sediments: Contrasts in Anaerobic Carbon Catabolism. Limnology and Oceanography 33:725-749.
7. Casper, P., O. Chim Chan, A. L. S. Furtado, and D. D. Adams. 2003. Methane in an acidic bog lake: The influence of peat in the catchment on the biogeochemistry of methane. Aquatic Sciences - Research Across Boundaries 65:36-46.
8. Chan, O. C., P. Claus, P. Casper, A. Ulrich, T. Lueders, and R. Conrad. 2005. Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139-49.
9. Chen, C. L., H. Macarie, I. Ramirez, A. Olmos, S. L. Ong, O. Monroy, and W. T. Liu. 2004. Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 150:3429-40.
10. Chen, C. L., J. H. Wu, and W. T. Liu. 2008. Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42:1963-76.
11. Chin, K. J., T. Lueders, M. W. Friedrich, M. Klose, and R. Conrad. 2004. Archaeal community structure and pathway of methane formation on rice roots. Microb Ecol 47:59-67.
12. Conrad, R., M. Klose, and P. Claus. 2000. Phosphate inhibits acetotrophic methanogenesis on rice roots. Appl Environ Microbiol 66:828-31.
13. Deppenmeier, U., and V. Muller. 2008. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 45:123-52.
14. Doddema, H. J., and G. D. Vogels. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36:752-754.
15. Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman. 2005. Diversity of the Human Intestinal Microbial Flora. Science 308:1635-1638.
16. Erkel, C., M. Kube, R. Reinhardt, and W. Liesack. 2006. Genome of Rice Cluster I archaea--the key methane producers in the rice rhizosphere. Science 313:370-2.
17. Fetzer, S., F. Bak, and R. Conrad. 1993. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiology Ecology 12:107-115.
18. Fey, A., K. J. Chin, and R. Conrad. 2001. Thermophilic methanogens in rice field soil. Environ Microbiol 3:295-303.
19. Forney, L. J., X. Zhou, and C. J. Brown. 2004. Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210-20.
20. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60-63.
21. Giovannoni, S. J., E. F. DeLong, G. J. Olsen, and N. R. Pace. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170:720-726.
22. Glissman, K., K. J. Chin, P. Casper, and R. Conrad. 2004. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb Ecol 48:389-99.
23. Grotenhuis, J. T. C. e. a. 1990. Effect of interspecies hydrogen transfer on the bacteriological structure of methanogenic granular sludge. In Proc. of the Int. Symp. on Physiology of Immobilized Cell, Wageningen, the Netherlands:95-98.
24. Guo, Y. Q., J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol 47:421-6.
25. Higuchi, R., C. Fockler, G. Dollinger, and R. Watson. 1993. Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Bio-Technology 11:1026-1030.
26. Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens. 2001. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiology Ecology 38:33-41.
27. Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta 62:1745-1756.
28. Hong, P.-Y., J.-H. Wu, and W.-T. Liu. 2009. A high-throughput and quantitative hierarchical oligonucleotide primer extension (HOPE)-based approach to identify sources of faecal contamination in water bodies. Environmental Microbiology 11:1672-1681.
29. Hong, P. Y., J. H. Wu, and W. T. Liu. 2008. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol 74:2882-93.
30. Hori, T., S. Haruta, Y. Ueno, M. Ishii, and Y. Igarashi. 2006. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623-30.
31. Janssen, P. H., and M. Kirs. 2008. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology 74:3619-3625.
32. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1992. Methanogenesis from acetate: a comparison of the acetate metabolism in <i>Methanothrix soehngenii</i> and <i>Methanosarcina</i> spp. FEMS Microbiology Letters 88:181-198.
33. Kendall, M. M., and D. R. Boone. 2006. Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon. Archaea 2:31-8.
34. Kendall, M. M., Y. Liu, and D. R. Boone. 2006. Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov., sp. nov. FEMS Microbiol Lett 262:107-14.
35. Kendall, M. M., G. D. Wardlaw, C. F. Tang, A. S. Bonin, Y. Liu, and D. L. Valentine. 2007. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73:407-14.
36. Kleerebezem, R., L. W. Hulshoff Pol, and G. Lettinga. 1999. Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65:1152-60.
37. Kruger, M., P. Frenzel, D. Kemnitz, and R. Conrad. 2005. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51:323-31.
38. Le Van, T. D., J. A. Robinson, J. Ralph, R. C. Greening, W. J. Smolenski, J. A. Leedle, and D. M. Schaefer. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl Environ Microbiol 64:3429-36.
39. Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997. H2/CO2 metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3:307-15.
40. Leclerc, M., J. P. Delgenes, and J. J. Godon. 2004. Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809-19.
41. Lemarchand, K., F. Berthiaume, C. Maynard, J. Harel, P. Payment, P. Bayardelle, L. Masson, and R. Brousseau. 2005. Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. J Microbiol Methods 63:115-26.
42. Levitt, M. D., J. K. Furne, M. Kuskowski, and J. Ruddy. 2006. Stability of Human Methanogenic Flora Over 35 Years and a Review of Insights Obtained From Breath Methane Measurements. Clinical Gastroenterology and Hepatology 4:123-129.
43. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516-22.
44. Liu, Y., and W. B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171-89.
45. Lowe, D. C. 2006. Global change: a green source of surprise. Nature 439:148-9.
46. Lu, Y., T. Lueders, M. W. Friedrich, and R. Conrad. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:326-36.
47. Lueders, T., and M. W. Friedrich. 2002. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol 68:2484-94.
48. Lyimo, T. J., A. Pol, H. J. Op den Camp, H. R. Harhangi, and G. D. Vogels. 2000. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50 Pt 1:171-8.
49. Mackay, I. M. 2004. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect 10:190-212.
50. Mackay, I. M. 2004. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection 10:190-212.
51. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
52. Narihiro, T., T. Terada, A. Ohashi, J.-H. Wu, W.-T. Liu, N. Araki, Y. Kamagata, K. Nakamura, and Y. Sekiguchi. 2009. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method. ISME J.
53. Newberry, C. J., G. Webster, B. A. Cragg, R. J. Parkes, A. J. Weightman, and J. C. Fry. 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274-87.
54. Oremland, R. S., and S. Polcin. 1982. Methanogenesis and Sulfate Reduction: Competitive and Noncompetitive Substrates in Estuarine Sediments. Appl. Environ. Microbiol. 44:1270-1276.
55. Parkes, R. J., B. A. Cragg, N. Banning, F. Brock, G. Webster, J. C. Fry, E. Hornibrook, R. D. Pancost, S. Kelly, N. Knab, B. B. Jorgensen, J. Rinna, and A. J. Weightman. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 9:1146-61.
56. Phelps, T. J., and J. G. Zeikus. 1984. Influence of pH on Terminal Carbon Metabolism in Anoxic Sediments from a Mildly Acidic Lake. Appl. Environ. Microbiol. 48:1088-1095.
57. Purdy, K. J. 2007. The distribution and diversity of Euryarchaeota in termite guts, p. 63-80, Advances in Applied Microbiology, Vol 62, vol. 62. Elsevier Academic Press Inc, San Diego.
58. Raskin, L., L. K. Poulsen, D. R. Noguera, B. E. Rittmann, and D. A. Stahl. 1994. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241-8.
59. Raskin, L., J. M. Stromley, B. E. Rittmann, and D. A. Stahl. 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232-40.
60. Raskin, L., D. Zheng, M. E. Griffin, P. G. Stroot, and P. Misra. 1995. Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Van Leeuwenhoek 68:297-308.
61. Rowe, A. R., B. J. Lazar, R. M. Morris, and R. E. Richardson. 2008. Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated "Dehalococcoides" and Methanospirillum species. Appl Environ Microbiol 74:6709-19.
62. Sakai, S., R. Conrad, W. Liesack, and H. Imachi. 2010. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen, isolated from Italian rice field soil. Int J Syst Evol Microbiol.
63. Sakai, S., H. Imachi, S. Hanada, A. Ohashi, H. Harada, and Y. Kamagata. 2008. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929-36.
64. Sakai, S., H. Imachi, Y. Sekiguchi, A. Ohashi, H. Harada, and Y. Kamagata. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326-31.
65. Sanz, J. L., and T. Köchling. 2007. Molecular biology techniques used in wastewater treatment: An overview. Process Biochemistry 42:119-133.
66. Savant, D. V., and D. R. Ranade. 2004. Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci Technol 50:109-14.
67. Scanlan, P. D., F. Shanahan, and J. R. Marchesi. 2008. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. Bmc Microbiology 8.
68. Schulz, S., and R. Conrad. 1996. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiology Ecology 20:1-14.
69. Schulz, S., H. Matsuyama, and R. Conrad. 1997. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiology Ecology 22:207-213.
70. Sekiguchi, Y., Y. Kamagata, K. Nakamura, A. Ohashi, and H. Harada. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280-8.
71. Shigematsu, T., Y. Tang, H. Kawaguchi, K. Ninomiya, J. Kijima, T. Kobayashi, S. Morimura, and K. Kida. 2003. Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547-58.
72. Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084.
73. Steinberg, L. M., and J. M. Regan. 2009. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435-42.
74. Strocchi, A., J. K. Furne, C. J. Ellis, and M. D. Levitt. 1991. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria. Gut 32:1498-501.
75. Suzuki, M. T., L. T. Taylor, and E. F. DeLong. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol 66:4605-14.
76. Talbot, G., E. Topp, M. F. Palin, and D. I. Masse. 2008. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Research 42:513-537.
77. Tholen, A., and A. Brune. 1999. Localization and In Situ Activities of Homoacetogenic Bacteria in the Highly Compartmentalized Hindgut of Soil-Feeding Higher Termites (Cubitermes spp.). Appl. Environ. Microbiol. 65:4497-4505.
78. Uyeno, Y., Y. Sekiguchi, A. Sunaga, H. Yoshida, and Y. Kamagata. 2004. Sequence-Specific Cleavage of Small-Subunit (SSU) rRNA with Oligonucleotides and RNase H: a Rapid and Simple Approach to SSU rRNA-Based Quantitative Detection of Microorganisms. Appl. Environ. Microbiol. 70:3650-3663.
79. Valentine, D. L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271-82.
80. Whitford, M. F., R. M. Teather, and R. J. Forster. 2001. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5.
81. Woese, C. R., and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088-90.
82. Wu, J. H., P. Y. Hong, and W. T. Liu. 2009. Quantitative effects of position and type of single mismatch on single base primer extension. J Microbiol Methods 77:267-75.
83. Wu, J. H., and W. T. Liu. 2007. Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res 35:e82.
84. Wu, J. H., W. T. Liu, I. C. Tseng, and S. S. Cheng. 2001. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147:373-82.
85. Wu, X. L., M. W. Friedrich, and R. Conrad. 2006. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol 8:394-404.
86. Yadvika, Santosh, T. R. Sreekrishnan, S. Kohli, and V. Rana. 2004. Enhancement of biogas production from solid substrates using different techniques--a review. Bioresour Technol 95:1-10.
87. Yu, Y., J. Kim, and S. Hwang. 2006. Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424-33.
88. Yu, Y., C. Lee, and S. Hwang. 2005. Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52:85-91.
89. Yu, Y., C. Lee, J. Kim, and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670-9.
90. Zhang, G., J. Tian, N. Jiang, X. Guo, Y. Wang, and X. Dong. 2008. Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850-60.
91. Zinder, S. H. 1993. Phisiological ecology of methanogens. in Methanogenesis: Ecology, Physiology, Biochemestry and Genetics. New York: Chapman & Hall.
校內:2015-08-20公開