| 研究生: |
陳宜真 Chen, Yi-Jen |
|---|---|
| 論文名稱: |
利用不同代謝體方法及液相層析-高解析質譜儀尋找體內鄰苯二甲酸二異壬酯代謝物 Evaluation of Various Metabolomics Approaches for the Elucidation of in-vivo di-isononyl phthalate Metabolites using Liquid Chromatography - High Resolution Mass Spectrometry |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 鄰苯二甲酸二異壬脂 、代謝物 、鑑定 、驗證 |
| 外文關鍵詞: | Di-isononyl phthalate, Metabolites, Identification, Validation |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
代謝體學是研究所有包含在生物體內的代謝物分子的所有組成內容,在過去十年當中,代謝體學的研究正蓬勃發展,而液相層析串聯質譜儀則是一重要的分析工具去找尋在生物體樣本中的可能代謝物訊號,由於經過液相層析串聯質譜儀分析會產生大量的數據,因此如何從中篩選出可能的代謝物訊號將是一大要點。故此,本篇研究的目標是比較及找尋最有效率的鑑定代謝物策略。此外,鄰苯二甲酸二異壬酯 (DINP) 在工業上為一個廣泛被使用的塑化劑之一,且鄰苯二甲酸二異壬酯可能會造成人類健康上的危害。因此本研究即利用鄰苯二甲酸二異壬酯為例進行體外代謝以鑑定出可能的代謝物訊號,接著以餵食鄰苯二甲酸二異壬酯的大鼠尿液進行代謝物訊號的驗證。所使用的三項代謝物鑑定的策略分別為: 同位素追蹤法 (Signal Mining Algorithm with Isotope Tracing, SMAIT) 、質量虧損過濾法 (Mass Defect Filter, MDF) 以及XCMS。在體外代謝部分,SMAIT成功篩選出16個鄰苯二甲酸二異壬酯 代謝物訊號、MDF篩選出11個以及XCMS篩選出134個可能代謝物訊號,由於XCMS所篩選出的代謝物訊號數量過多,在驗證代謝物訊號的步驟是困難的,因此,在體外代謝階段,XCMS不是一個有效率的篩選代謝物訊號的策略。在體內代謝驗證的部分,SMAIT所篩選出的代謝物有14個代謝物訊號被驗證,MDF則有9個代謝物訊號被驗證,從此結果可得,SMAIT相較於MDF可以篩選出更多鄰苯二甲酸二異壬酯代謝物訊號,且SMAIT是三種策略中能最有效率的鑑定出代謝物訊號的策略。此外,高解析質譜儀的數據顯示我們找尋到和文獻所發表不一樣的代謝物,針對此代謝物,我們進行了結構驗證,由結果顯示,我們找尋到一個新的氫氧基的鄰苯二甲酸二異壬酯代謝物。
Metabolomics includes the study of small molecules in a biological sample. Over the last decade, the study of metabolomics grows rapidly and liquid chromatography coupled with mass spectrometry (LC–MS) profiling is an important approach for the identification of metabolites from complex biological samples. Due to the large amount of data produced in LC–MS profiling experiment, there is a great need to filter useful metabolite signals in biological samples. Hence, the aim of this study is to evaluate the efficiency of metabolite identification strategy. On the other hand, di-isononyl phthalate (DINP) is a widely used plasticizer in industry and may have potentially adverse health effects on humans. Here, we used DINP as in vitro metabolism model to identify probable DINP metabolites and validate these metabolites in rat urine. Then, we used three strategies to identify probable DINP metabolite signals including Signal Mining Algorithm with Isotope Tracing (SMAIT), Mass Defect Filter (MDF), and XCMS. In in vitro stage, SMAIT filtered out 16 metabolite signals, MDF filtered out 11 probable metabolite signals, and XCMS filtered out 134 metabolite signals. Because of the large amount of metabolite signals which XCMS filtered, it’s hard to validate each metabolite. Consequently, XCMS is not an efficient strategy in in vitro stage. In in vivo stage, 14 metabolites were validated by SMAIT and 9 metabolites were validated by MDF in rat urine. As the results, SMAIT can filter more DINP metabolites than MDF. According to above results, SMAIT is the most efficient strategy among these three strategies. Specifically, the high resolution LC-MS data showed that we found new DINP metabolites differ with literature. Based on this result, we did structure confirmation to check the structure of m/z 293.139. The results showed that we found a new hydroxyl metabolite of DINP.
AGPU. 2006. Arbeitsgemeinschaft pvc und umwelt. Plastizicers Market Data Www.Agpu.De.Pdf.
Anderson WAC, Castle L, Hird S, Jeffery J, Scotter MJ. 2011. A twenty-volunteer study using deuterium labelling to determine the kinetics and fractional excretion of primary and secondary urinary metabolites of di-2-ethylhexylphthalate and di-iso-nonylphthalate. Food Chem Toxicol 49:2022-2029.
Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, et al. 2011. Reproductive and behavioral effects of diisononyl phthalate (dinp) in perinatally exposed rats. Reproductive Toxicology 31:200-209.
ECFA. 2012. Plasticisers update and reputation management within the vinyls value chain. 'SAVA PVC 2012' 17th April 2012. Johannesburg.
Frederiksen H, Skakkebaek NE, Andersson AM. 2007. Metabolism of phthalates in humans. Molecular nutrition & food research 51:899-911.
Gray LE, Ostby J, Furr J, Price M, Veeramachaneni DR, Parks L. 2000. Perinatal exposure to the phthalates dehp, bbp, and dinp, but not dep, dmp, or dotp, alters sexual differentiation of the male rat. Toxicological Sciences 58:350-365.
Hendriks MM, Eeuwijk FAv, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HC, et al. 2011. Data-processing strategies for metabolomics studies. TrAC Trends in Analytical Chemistry 30:1685-1698.
Hsu J-F, Peng L-W, Li Y-J, Lin L-C, Liao P-C. 2011. Identification of di-isononyl phthalate metabolites for exposure marker discovery using in vitro/in vivo metabolism and signal mining strategy with lc-ms data. Analytical chemistry 83:8725-8731.
Jackson P, Brownsill R, Taylor A, Walther B. 1995. Use of electrospray ionization and neutral loss liquid chromatography/tandem mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry 30:446-451.
Katajamaa M, Orešič M. 2007. Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A 1158:318-328.
Koch HM, Angerer J. 2007. Di-iso-nonylphthalate (dinp) metabolites in human urine after a single oral dose of deuterium-labelled dinp. International journal of hygiene and environmental health 210:9-19.
Kransler KM, Bachman AN, McKee RH. 2012. A comprehensive review of intake estimates of di-isononyl phthalate (dinp) based on indirect exposure models and urinary biomonitoring data. Regulatory toxicology and pharmacology : RTP 62:248-256.
Latini G. 2005. Monitoring phthalate exposure in humans. Clinica Chimica Acta 361:20-29.
Liang Y, Wang G, Xie L, Sheng L. 2011. Recent development in liquid chromatography/mass spectrometry and emerging technologies for metabolite identification. Current drug metabolism 12:329-344.
Lin L-C, Wu H-Y, Tseng VS-M, Chen L-C, Chang Y-C, Liao P-C. 2010. A statistical procedure to selectively detect metabolite signals in lc-ms data based on using variable isotope ratios. Journal of the American Society for Mass Spectrometry 21:232-241.
Lin L-C, Wang S-L, Chang Y-C, Huang P-C, Cheng J-T, Su P-H, et al. 2011. Associations between maternal phthalate exposure and cord sex hormones in human infants. Chemosphere 83:1192-1199.
Ma S, K Chowdhury S, B Alton K. 2006. Application of mass spectrometry for metabolite identification. Current drug metabolism 7:503-523.
Putri SP, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, et al. 2013. Current metabolomics: Practical applications. Journal of bioscience and bioengineering 115:579-589.
Roux A, Xu Y, Heilier J-Fo, Olivier M-Fo, Ezan E, Tabet J-C, et al. 2012. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Analytical chemistry 84:6429-6437.
Ruan Q, Peterman S, Szewc MA, Ma L, Cui D, Humphreys WG, et al. 2008. An integrated method for metabolite detection and identification using a linear ion trap/orbitrap mass spectrometer and multiple data processing techniques: Application to indinavir metabolite detection. Journal of mass spectrometry 43:251-261.
Saravanabhavan G, Murray J. 2012. Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: A review. Journal of environmental and public health 2012:810501.
Silva MJ, Kato K, Wolf C, Samandar E, Silva SS, Gray EL, et al. 2006. Urinary biomarkers of di-isononyl phthalate in rats. Toxicology 223:101-112.
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical chemistry 78:779-787.
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. 2012. Xcms online: A web-based platform to process untargeted metabolomic data. Analytical chemistry 84:5035-5039.
Teitelbaum SL, Mervish N, L Moshier E, Vangeepuram N, Galvez MP, Calafat AM, et al. 2012. Associations between phthalate metabolite urinary concentrations and body size measures in new york city children. Environmental research 112:186-193.
Theodoridis G, Gika HG, Wilson ID. 2011. Mass spectrometry‐based holistic analytical approaches for metabolite profiling in systems biology studies. Mass spectrometry reviews 30:884-906.
Tolonen A, Turpeinen M, Pelkonen O. 2009. Liquid chromatography–mass spectrometry in< i> in vitro</i> drug metabolite screening. Drug discovery today 14:120-133.
Xu Y-J, Wang C, Ho WE, Ong CN. 2014. Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends in Analytical Chemistry.
Zhang H, Ma L, He K, Zhu M. 2008a. An algorithm for thorough background subtraction from high‐resolution lc/ms data: Application to the detection of troglitazone metabolites in rat plasma, bile, and urine. Journal of mass spectrometry 43:1191-1200.
Zhang H, Zhu M, Ray KL, Ma L, Zhang D. 2008b. Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Communications in Mass Spectrometry 22:2082-2088.
Zhang H, Grubb M, Wu W, Josephs J, Humphreys WG. 2009. Algorithm for thorough background subtraction of high-resolution lc/ms data: Application to obtain clean product ion spectra from nonselective collision-induced dissociation experiments. Analytical chemistry 81:2695-2700.
Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, et al. 2006. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug metabolism and disposition 34:1722-1733.
Zhu M, Ma L, Zhang H, Humphreys WG. 2007. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Analytical chemistry 79:8333-8341.
Zhu M, Zhang H, Humphreys WG. 2011. Drug metabolite profiling and identification by high-resolution mass spectrometry. Journal of Biological Chemistry 286:25419-25425.
Zhu P, Tong W, Alton K, Chowdhury S. 2009. An accurate-mass-based spectral-averaging isotope-pattern-filtering algorithm for extraction of drug metabolites possessing a distinct isotope pattern from lc-ms data. Analytical chemistry 81:5910-5917.
校內:2024-12-31公開