| 研究生: |
林怡君 Lin, I-Chun |
|---|---|
| 論文名稱: |
基於Λ型原子系綜產生光量子糾纏的理論研究 Theoretical Study on the Generation of Optical Quantum Entanglement Based on Λ–Type Atomic Ensembles |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 量子光學 、量子糾纏 、電磁波引發透明 、同調居量捕獲 |
| 外文關鍵詞: | Quantum optics, Entanglement, EIT, CPT |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究 Λ 型原子系綜在三種理論模型下的量子糾纏效應。分別是半古典模型、 微擾全量子模型與非微擾全量子模型。對於前兩者,我們進行基於弱場近似與一階 微擾展開的理論計算,並提供探測場光子在電磁波引發透明 (EIT) 中傳播行為的解析 解。考慮到原子群在介質中的演化會受到真空環境的影響,我們捨棄古典模型常用 的光布拉赫方程,反而用探討開放系統時引入的海森堡–朗之萬方程式。另一方面, 對於光場在介質中的演化,我們保留古典模型也使用過的馬克士威–薛丁格方程。藉 由全量子模型的解析解,我們可以探討探測場與耦合場之間形成糾纏的物理圖像, 發現電磁波引發透明的量子行為與耦合場的量子漲落有密切關聯。由於不同量子態 表現出不同的不確定性,狀態演化可以用正交方差 (quadrature variance) 表示。此外, 糾纏的定義是透過 Duan 發表的定理來建構,分別由兩連續變量的總方差和相關性組 成。解析解得到的糾纏受限於居量假設與不確定性,類愛因斯坦–波多爾斯基–羅森 (Einstein–Podolsky–Rosen) 算符的方差極限值大約是 0.75。為了讓 Λ 型的理論架構更 完整,以及消除一階微擾造成的失真,我們研究非微擾全量子模型包含電磁波引發 透明與同調居量捕獲下的量子效應。數值解得到的糾纏受限於不確定性,類愛因斯 坦–波多爾斯基–羅森算符的方差極限值大約是 0.5。雖然解析解存在失真,但對於理 解糾纏背後的物理背景功不可沒。數值解讓我們突破電磁波引發透明對光場強度的 限制,得以研究同調居量捕獲配置的量子行為。
We investigate the quantum entanglement effects in a Λ–type atomic ensemble under three theoretical models: the semi–classical model, the perturbation full–quantum model, and the non–perturbation full–quantum model. For the first two models, we perform theoretical analysis based on the weak–field approximation and first–order perturbation, providing analytical solutions for the propagation behavior of probe field photons in electromagnetically induced transparency (EIT). Considering that the evolution of atomic ensembles in the medium is influenced by the vacuum reservoir, we abandon the optical Bloch equations (OBEs) commonly used in classical models and instead employ the Heisenberg–Langevin equations (HLEs) which are often introduced when studying open quantum systems. On the other hand, for the evolution of the probe field in the EIT medium, we retain the Maxwell–Schrödinger equation (MSE) used in classical models. Through the analytical solutions provided by the full– quantum model, we can reveal the physical picture of entanglement construction between the probe and coupling field, discovering that the quantum behavior of EIT is closely related to the coupling field fluctuations. Since different quantum states have different uncertainty properties, state evolution can be represented by quadrature variance. Furthermore, the criterion of entanglement is built through Duan’s theorem, consisting of the total variance and correlations of two continuous variables. The entanglement obtained from analytical solution is limited by the population assumption and uncertainty, with a variance of EPR (Einstein– Podolsky–Rosen)–like operators limit of approximately 0.75. To make the Λ–type theoretical framework more complete and to eliminate distortions caused by first–order perturbation, we study the non–perturbation full–quantum model, including the quantum effects under EIT and coherent population trapping (CPT). The entanglement obtained from numerical solutions is limited by the uncertainty, with a variance of EPR–like operators limit of approximately 0.5. Although analytical solutions may have distortions, they are invaluable for understanding the physical backgrounds behind entanglement. Numerical solutions allow us to overcome the intensity limitations imposed by EIT on the probe field, enabling the study of quantum behavior in CPT configurations.
[1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., vol. 47, pp. 777–780, May 1935.
[2] N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., vol. 48, pp. 696–702, Oct 1935.
[3] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964.
[4] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett., vol. 28, pp. 938–941, Apr 1972.
[5] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett., vol. 49, pp. 1804–1807, Dec 1982.
[6] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, pp. 575–579, Dec 1997.
[7] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, pp. 682–686, Oct 2015.
[8] J. Gruska et al., Quantum computing, vol. 2005. McGraw-Hill London, 1999.
[9] J. L. O’Brien, “Optical quantum computing,” Science, vol. 318, no. 5856, pp. 1567– 1570, 2007.
[10] D. S. Weiss and M. Saffman, “Quantum computing with neutral atoms,” Physics Today, vol. 70, pp. 44–50, 07 2017.
[11] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, pp. 165– 171, Mar 2007.
[12] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, pp. 413–418, Nov 2001.
[13] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature, vol. 423, pp. 731–734, Jun 2003.
[14] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific Reports, vol. 6, p. 20463, Feb 2016.
[15] W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, and G.-C. Guo, “Quantum secure direct communication with quantum memory,” Physical review letters, vol. 118, no. 22, p. 220501, 2017.
[16] S. E. Harris, “Electromagnetically induced transparency,” Physics today, vol. 50, no. 7, pp. 36–42, 1997.
[17] M. Himsworth, P. Nisbet, J. Dilley, G. Langfahl-Klabes, and A. Kuhn, “Eit-based quantum memory for single photons from cavity-qed,” Applied Physics B, vol. 103, pp. 579– 589, 2011.
[18] K. McDonnell, L. Keary, and J. Pritchard, “Demonstration of a quantum gate using electromagnetically induced transparency,” Physical Review Letters, vol. 129, no. 20, p. 200501, 2022.
[19] S. Rebić, C. Ottaviani, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Assessment of a quantum phase-gate operation based on nonlinear optics,” Physical Review A, vol. 74, no. 3, p. 032301, 2006.
[20] T. Stolz, H. Hegels, M. Winter, B. Röhr, Y.-F. Hsiao, L. Husel, G. Rempe, and S. Dürr, “Quantum-logic gate between two optical photons with an average efficiency above 40%,” Physical Review X, vol. 12, no. 2, p. 021035, 2022.
[21] C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Quantum phase-gate operation based on nonlinear optics: Full quantum analysis,” Phys. Rev. A, vol. 73, p. 010301, Jan 2006.
[22] A. M. Farouk, I. I. Beterov, P. Xu , S. Bergamini , and I. I. Ryabtsev , “Parallel implementation of cnotn and c2not2 gates via homonuclear and heteronuclear förster interactions of rydberg atoms,” Photonics, vol. 10, no. 11, 2023.
[23] Z.-Y. Liu, J.-S. Shiu, C.-Y. Cheng, and Y.-F. Chen, “Controlling frequency-domain hong-ou-mandel interference via electromagnetically induced transparency,” Phys. Rev. A, vol. 108, p. 013702, Jul 2023.
[24] J.-S. Shiu, Z.-Y. Liu, C.-Y. Cheng, Y.-C. Huang, I. A. Yu, Y.-C. Chen, C.-S. Chuu, C.-M. Li, S.-Y. Wang, and Y.-F. Chen, “Observation of highly correlated ultrabright biphotons through increased atomic ensemble density in spontaneous four-wave mixing,” 2024.
[25] P.-H. Tseng, L.-C. Chen, J.-S. Shiu, and Y.-F. Chen, “Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles,” Phys. Rev. A, vol. 109, p. 043716, Apr 2024.
[26] Y.-C. Wei, B.-H. Wu, Y.-F. Hsiao, P.-J. Tsai, and Y.-C. Chen, “Broadband coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. A, vol. 102, p. 063720, Dec 2020.
[27] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett., vol. 120, p. 183602, May 2018.
[28] Y.-F. Chen, Y.-C. Liu, Z.-H. Tsai, S.-H. Wang, and I. A. Yu, “Beat-note interferometer for direct phase measurement of photonic information,” Phys. Rev. A, vol. 72, p. 033812, Sep 2005.
[29] H.-Y. Lo, P.-C. Su, Y.-W. Cheng, P.-I. Wu, and Y.-F. Chen, “Femtowatt-light-level phase measurement of slow light pulses via beat-note interferometer,” Opt. Express, vol. 18, pp. 18498–18505, Aug 2010.
[30] C.-Y. Cheng, Z.-Y. Liu, P.-S. Hu, T.-N. Wang, C.-Y. Chien, J.-K. Lin, J.-Y. Juo, J.-S. Shiu, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Efficient frequency conversion based on resonant four-wave mixing,” Opt. Lett., vol. 46, pp. 681–684, Feb 2021.
[31] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen, “Quantum frequency conversion based on resonant four-wave mixing,” Phys. Rev. A, vol. 103, p. 023711, Feb 2021.
[32] C.-Y. Hsu, Y.-S. Wang, J.-M. Chen, F.-C. Huang, Y.-T. Ke, E. K. Huang, W. Hung, K.- L. Chao, S.-S. Hsiao, Y.-H. Chen, et al., “Generation of sub-mhz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme,” Optics Express, vol. 29, no. 3, pp. 4632–4644, 2021.
[33] J.-M. Chen, C.-Y. Hsu, W.-K. Huang, S.-S. Hsiao, F.-C. Huang, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Room-temperature biphoton source with a spectral brightness near the ultimate limit,” Physical Review Research, vol. 4, no. 2, p. 023132, 2022.
[34] J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-y. Zhu, “Optimization of the noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A, vol. 76, p. 033814, Sep 2007.
[35] Y.-L. Chuang, I. A. Yu, and R.-K. Lee, “Quantum theory for pulse propagation in electromagnetically-induced-transparency media beyond the adiabatic approximation,” Physical Review A, vol. 91, no. 6, p. 063818, 2015.
[36] A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A, vol. 71, p. 033809, Mar 2005.
[37] A. Dantan, M. Pinard, and P. R. Berman, “Eit-assisted atomic squeezing,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, vol. 27, pp. 193– 199, Nov 2003.
[38] M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett., vol. 84, pp. 5094–5097, May 2000.
[39] M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A, vol. 65, p. 022314, Jan 2002.
[40] H. Hsu, C.-Y. Cheng, J.-S. Shiu, L.-C. Chen, and Y.-F. Chen, “Quantum fidelity of electromagnetically induced transparency: the full quantum theory,” Opt. Express, vol. 30, pp. 2097–2111, Jan 2022.
[41] X. Yang and M. Xiao, “Electromagnetically induced entanglement,” Scientific Reports, vol. 5, no. 1, p. 13609, 2015.
[42] Y.-L. Chuang, R.-K. Lee, and A. Y. Ite, “Generation of quantum entanglement based on electromagnetically induced transparency media,” Optics Express, vol. 29, no. 3, pp. 3928–3942, 2021.
[43] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of r.f. transitions and laser beat resonances in oriented na vapour,” Il Nuovo Cimento B (1971-1996), vol. 36, pp. 5–20, Nov 1976.
[44] L. Nicolas, T. Delord, P. Jamonneau, R. Coto, J. Maze, V. Jacques, and G. Hétet, “Coherent population trapping with a controlled dissipation: applications in optical metrology,” New Journal of Physics, vol. 20, p. 033007, mar 2018.
[45] M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, “All-optical atomic clock based on coherent population trapping in 85rb,” J. Opt. Soc. Am. B, vol. 20, pp. 273–279, Feb 2003.
[46] J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Applied Physics B, vol. 81, pp. 421–442, Aug 2005.
[47] D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “Ac stark-shift in cpt-based cs miniature atomic clocks,” Applied Physics B, vol. 109, pp. 89– 97, Oct 2012.
[48] E. Alipieva, S. Gateva, and E. Taskova, “Potential of the single-frequency cpt resonances for magnetic field measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 2, pp. 738–741, 2005.
[49] S. Gateva, E. Alipieva, L. Petrov, E. Taskova, and G. Todorov, “Single frequency coherent-population-trapping resonances for magnetic field measurement,” Journal of optoelectronics and advanced materials, vol. 10, no. 1, p. 98, 2008.
[50] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature, vol. 397, pp. 594–598, Feb 1999.
[51] A. Godone, F. Levi, and S. Micalizio, “Slow light and superluminality in the coherent population trapping maser,” Phys. Rev. A, vol. 66, p. 043804, Oct 2002.
[52] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett., vol. 84, pp. 2722–2725, Mar 2000.
[53] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett., vol. 64, pp. 1107–1110, Mar 1990.
[54] S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett., vol. 70, pp. 552–555, Feb 1993.
[55] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, 1997.
[56] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature, vol. 421, pp. 238–241, Jan 2003.
[57] L. Davidovich, “Sub-poissonian processes in quantum optics,” Rev. Mod. Phys., vol. 68, pp. 127–173, Jan 1996.
[58] G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nature Photonics, vol. 9, no. 5, pp. 316– 319, 2015.
[59] J. Feng, Z. Wan, Y. Li, and K. Zhang, “Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20 km of optical fiber,” Opt. Lett., vol. 42, pp. 3399–3402, Sep 2017.