| 研究生: |
楊意凡 Yang, Yi-Fan |
|---|---|
| 論文名稱: |
考量排砂與自然流態於水庫最佳化操作 Optimal Reservoir Operation Considering Sediment Flushing and Natural Flow Regimes |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 自然流態 、環境流量 、水力排砂 、最佳化蝙蝠演算法 、水文改變指標 、變化範圍法 、缺水指數 、風險評估指標 |
| 外文關鍵詞: | Natural Flow Regime, Environmental Flow, Hydraulic Slag Removal, Bat Algorithm, Indicator of Hydrologic Alteration (IHA), Range of Variability Approach (RVA), Evaluation Indicators |
| 相關次數: | 點閱:230 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長期以來,水庫的興建都被用來解決水資源不足的問題,過度使用水資源導致下游河流生態環境缺乏流量的補注,並使河流生態系統失去原本的自然流態;同時也會導致上下游侵蝕堆積作用不一致,造成泥砂都積在水庫中,經過長年的累積後,使得水庫庫容的大幅度減少,從而使水庫壽命降低。因此本研究設計一套貼近現況的水庫操作模擬,同時以最佳化蝙蝠演算法(BA)來模擬相同放流規則的水庫操作,並以蓄水量作為決策變數,來比較兩項模擬的多目標結果,期望達到人類用水需求,同時兼顧河流生態系統與提升水庫排砂效率等目標。在多目標最佳化的問題中,蝙蝠演算法可以有效的處理高度非線性的問題,並能準確地找到最佳解決方案。
本研究以曾文及烏山頭水庫系統為研究區域,藉由流量與降雨量數據,設計各標的放水規則,並以人類缺水、排砂效率、自然流態三個項目作為最佳化的目標函數。計算出目標函數的結果後,再去個別分析與討論最佳化模式和現行水庫模擬;此外,將所得出的結果結合風險評估指標、SI缺水指數,觀察其缺水情形。依據這些結果,以選擇合適的模式。
在人類缺水目標上,現行水庫模擬表現較佳,最佳化模式缺水較多主要是因為生態需求而多放水;與現實的供水情形相比,兩項模擬的放水對人類需水所造成影響是勉強可接受的。排砂效率目標上,最佳化模式的排砂效率平均值較現行水庫模擬高,且在總排砂量上有很好的表現。在自然流態目標中,最佳化模式的水文改變程度較低,即較接近自然流態的情境。然而,最佳化模式在保留蓄水量部分,表現較沒有現行水庫模擬來的好,因此若是以貼近自然流態為目標的話,建議以最佳化模式作為水庫操作方案;而若顧慮到未來的可用蓄水量,會建議以現行水庫模擬作為水庫操作方案。本研究最佳化模式結果之蓄水規線,將提供此曾文、烏山頭水庫聯合系統於未來未知的水文條件下,以最大滿足人類、排砂與生態需求的操作規則,且可以根據不同目標權重的設定,安排適合的水庫操作規則,此規則可以提供水資源管理者於決策時的參考。
The construction of reservoirs has been used to solve the problem of insufficient water resources. Excessive use of water resources leaded to the lack of flow replenishment for the downstream river ecological environment, and it altered its original natural flow regime affecting the river ecosystem. It also caused that erosion and deposition are inconsistent of upstream and downstream, causing sediment to deposit in the reservoir. Therefore, this study designed a set of reservoir operation simulations that are close to the current situation, and used the optimized bat algorithm (BA) to simulate the reservoir operation with the same discharge rules. In the optimization model, storages were treated as decision variables to compare the multi-objective results of the two simulations. Based on the flow and rainfall data of Zengwen and Wushantou Reservoir, the rules for water use were designed. The optimized objective functions included objectives such as human water shortage, sediment discharge efficiency, and natural flow regime. After calculating results of the objective function, individual analysis and discussion were used to compare the optimization model and the current reservoir simulation. In addition, the results obtained were combined with the risk assessment index and the SI water shortage index to observe the water shortage situation. The reservoir operating rule curve of the optimized model results would provide the operating rules for the Zengwen and Wushantou Reservoir System. It would be to meet human, sediment discharge and ecological needs to the greatest extent under unknown hydrological conditions in the future. According to the setting of different objective weights, suitable reservoir operation rules could be arranged, which could provide water resources managers as a reference when making decisions.
英文文獻
Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loáiciga, H. A., Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8). (2015).
Bunn, S. E., & Arthington, A. H., Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage, 30(4), 492-507. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12481916, (2002).
Chang, F. J., Chen, L., & Chang, L. C., Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes: An International Journal, 19(11), 2277-2289. (2005).
Chang, F.-J., Lai, J.-S., & Kao, L.-S., Optimization of operation rule curves and flushing schedule in a reservoir. Hydrological Processes, 17(8), 1623-1640. (2003).
Declaration, B., The Brisbane Declaration: environmental flows are essential for freshwater ecosystem health and human well-being. 10th Interational River Symposium, Brisbane, Australia, 3-6. (2007).
Dyson, M., Bergkamp, G., & Scanlon, J., Flow: the essentials of environmental flows. IUCN, Gland, Switzerland and Cambridge, UK, 20-87. (2003).
Hashimoto, T., Stedinger, J. R., & Loucks, D. P., Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. (1982).
Hu, W.-w., Wang, G.-x., Deng, W., & Li, S.-n., The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecological engineering, 33(3-4), 233-241. (2008).
Karr, J. R. (1998). Rivers as Sentinels: Using the Biology of Rivers to Guide Landscape Management. In River ecology and management: Lessons from the Pacific coastal ecoregion (pp. 502-528).
King, A. J., Gwinn, D. C., Tonkin, Z., Mahoney, J., Raymond, S., & Beesley, L., Using abiotic drivers of fish spawning to inform environmental flow management. Journal of Applied Ecology, 53(1), 34-43. (2016).
King, J., Brown, C., & Sabet, H., A scenario-based holistic approach to environmental flow assessments for rivers. River Research and Applications, 19(5-6), 619-639. (2003).
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., & Yang, C. T., Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2(5), 256-280. (2014).
Labadie, J. W., Optimal operation of multireservoir systems: state-of-the-art review. Journal of Water Resources Planning and Management, 130(2), 93-111. (2004).
Lai, J.-S., & Shen, H. W., Flushing sediment through reservoirs. Journal of Hydraulic Research, 34(2), 237-255. (1996).
Mirjalili, S., Mirjalili, S. M., & Yang, X.-S., Binary bat algorithm. Neural Computing and Applications, 25(3-4), 663-681. (2013).
Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C., Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. (2005).
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., & Stromberg, J. C., The natural flow regime : A Paradigm for River Conservation and Restoration. BioScience, 47, 769-784. (1997).
Poff, N. L., & Matthews, J. H., Environmental flows in the Anthropocence: past progress and future prospects. Current Opinion in Environmental Sustainability, 5(6), 667-675. (2013).
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., Freeman, M. C., henriksen, J., Jacobson, R. B., Kennen, J. G., Merritt, D. M., O'Keeffe, J. H., Olden, J. D., Rogers, K., Tharme, R. E., & Warner, A., The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170. (2010).
Poff, N. L., & Zimmerman, J. K. H., Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194-205. (2010).
Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J., A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research Management: An International Journal Devoted to River Research and Management, 329-340. (1998).
Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P., A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10(4), 1163-1174. (1996).
Shokri, A., Haddad, O. B., & Mariño, M. A., Reservoir operation for simultaneously meeting water demand and sediment flushing: Stochastic dynamic programming approach with two uncertainties. Journal of Water Resources Planning and Management, 139(3), 277-289. (2013).
Suen, J.-P., & Eheart, J. W., Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resources Research, 42(3). (2006).
Suen, J.-P., & Herricks, E. E., Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia, 625(1), 223-234. (2009).
Tennant, D. L., Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10. (1976).
Tharme, R. E., A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5‐6), 397-441. (2003).
Wang, Z.-y., & Hu, C., Strategies for managing reservoir sedimentation. International Journal of Sediment Research, 24(4), 369-384. (2009).
Yang. Nature-inspired metaheuristic algorithms: Luniver press. (2010a).
Yang. A New Metaheuristic Bat-Inspired Algorthm. Nature inspired cooperative strategies for optimization (NISCO 2010), 65-74. (2010b).
Yang, & Gandomi, A. H., Bat Algorithm A Novel Approach for Global Engineering Optimization. Engineering computations, 29(5), 464-483. (2012).
Yang, Y. C. E., Cai, X., & Herricks, E. E., Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research, 44(4). (2008).
Yeh, W. W. G., Reservoir management and operations models: A state‐of‐the‐art review. Water Resources Research, 21(12), 1797-1818. (1985).
Yin, X.-A., Yang, Z.-F., Petts, G. E., & Kondolf, G. M., A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply. Journal of Hydrology, 512, 379-387. (2014).
Zarei, A., Mousavi, S.-F., Gordji, M. E., & Karami, H., Optimal reservoir operation using bat and particle swarm algorithm and game theory based on optimal water allocation among consumers. Water Resources Management, 33(9), 3071-3093. (2019).
中文文獻
巨廷工程顧問公司,永續水庫與一般水庫防淤規劃策略差異分析,經濟部水利署水利規劃試驗所,2010。
汪靜明,台灣河川的生態保育,科學月刊22(12):930-937,1991。
邱繼賢,兼顧環境流量之跨流域水資源應用—取法都江堰之引水概念。國立成功大學水利及海洋工程學系碩士論文,台南市,2010。取自https://hdl.handle.net/11296/b659h8
陳堯風、林信初,威脅河川之因素,American Rivers,2002。
經濟部,曾文水庫運用要點,經濟部,2017。
經濟部,曾文水庫水門操作規定,經濟部,2017。
經濟部水利署,台灣地區水資源開發綱領計畫,經濟部水利署,2009。
經濟部水利署南區水資源局,曾文水庫營運月報表,經濟部水利署南區水資源局,1982-2017。
經濟部水利署南區水資源局,曾文水庫防洪防淤策略,經濟部水利署南區水資源局,2012。
經濟部水利署南區水資源局,108年度曾文水庫庫區泥砂濃度觀測站維護及資料蒐集分析,經濟部水利署南區水資源局,2019。
經濟部水利署南區水資源局,曾文水庫集水區土地變異及土砂災害監測成果報告,經濟部水利署南區水資源局,2013。
經濟部水利署南區水資源局,曾文水庫網頁介紹,取自https://www.wrasb.gov.tw/business/business02Tzeng.aspx?no=14&ShowNo=120&no2=137&no3=43&wid=83
經濟部水利署水利規劃試驗所,水利署電子報第0171期,經濟部水利署水利規劃試驗所,2016。
蔡雨璇,結合乾旱指標之多水庫系統環境流量管理策略。國立成功大學水利及海洋工程學系碩士論文,台南市,2019。取自https://hdl.handle.net/11296/xtrqru
謝沃田、俞維昇,曾文水庫淤積清理規劃初步研究,曾文水庫管理局委託計畫,巨廷工程顧問公司報告,1994。
蕭政宗、吳富春,集集攔河堰最佳引水與河川生態流量之研究,第十四屆水利工程研討會,交通大學,2004。
蕭政宗、吳富春,變異範圍法 RVA 應用於河川生態流量之規劃,第二屆生態工程學術研討會,台灣大學,2005。
顏沛華、周乃昉、蔡長泰,曾文、烏山頭水庫串聯運用引水量蒸發滲漏輸水損失問題探討改善研究,成大水利海洋研究發展文教基金會,2000。
簡宗賢,水庫空庫排砂操作時間點選定之研究。國立台灣大學土木工程學研究所碩士論文,台北市,2013。取自https://hdl.handle.net/11296/w722gw