簡易檢索 / 詳目顯示

研究生: 林博文
Lin, Po-wen
論文名稱: 應用微流體晶片與化學交聯反應生成幾丁聚醣纖維絲之研究
Using Microfluidic Chip and Crosslinking Reaction for Chitosan Microfibers Generation
指導教授: 林裕城
Lin, Yu-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 128
中文關鍵詞: 纖維母細胞許旺細胞微纖維絲幾丁聚醣微流道
外文關鍵詞: Chitosan, microfluidic, microfibers, Schwann cell, Fibroblast cell
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用雷射加工技術與微機電製程,分別製備聚甲基丙烯酸甲酯(Poly-methyl-methacrylate, PMMA) 微流體晶片與聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微流體晶片,用於製備幾丁聚醣微纖維絲(Chitosan microfibers)。研究策略是將幾丁聚醣溶液與三聚磷酸鈉溶液注入微流道中,透過鞘流原理於流道交匯處形成幾丁聚醣液體層流,經實驗證實藉操控液體流量可生成不同厚度的層流,在PMMA晶片實驗中,能控制在30~50 µm,而PDMS晶片實驗中則能控制在15~40 µm之間。進一步探討不同角度對層流的生成影響,發現30°角相較60°角具有縮小10%層流厚度的效果。而在三聚磷酸鈉溶液的交聯反應下,幾丁聚醣液體層流能形成幾丁聚醣纖維絲,於本實驗中所製備之纖維絲管徑範圍為20~200 µm。取約80~100 µm左右管徑之幾丁聚醣纖維絲,將膠原蛋白(Collage)沾附表面後進行細胞培養實驗,以幾丁聚醣纖維絲分別與許旺細胞(Schwann cell)及纖維母細胞(Fibroblast cell)共同培養,實驗結果發現許旺細胞能在微纖維絲上增生形成一細胞鏈,而纖維母細胞能在纖維絲上大量增生並將其包覆起來,驗證了幾丁聚醣纖維絲應用在細胞培養上的可行性。

    In this study, we fabricated the Poly-methyl-methacrylate (PMMA) microfluidic and Polydimethylsiloxane (PDMS) microfluidic chip by using laser machine and MEMS technologies to generate chitosan microfibers. Our strategy is that the chitosan solution and sodium tripolyphosphate (STPP) solution are pumped into the cross-junction microchannel of the microfluidic chip and the laminar flow of chitosan solution can be generated by the hydrodynamic focusing. By varying the ratio between chitosan solution rates and STPP solution flow rates, the various diameters of laminar flow can be obtained. By controlling core and sheath flow rate, we can generate different diameter of laminar flow from 30~50 µm with PMMA microfluidic chip, and the diameter of laminar flow from 15~40 µm with PDMS microfluidic chip. Cross-junction microchannel with angle 30°、45° and 60° were designed for investigating the influence of the generation of laminar flow. The microfluidic chip with angle 30° microchannel can decrease the diameter of laminar flow with 10% than that with angle 60° microchannel. The laminar flow of chitosan solution transform the chitosan microfibers by cross-linking reaction with STPP solution, and the diameter of chitosan microfiber can be obtained from 20 µm to 200 µm. Then, the chitosan microfiber with diameter of 80~100 µm was chosen as scaffold, and the chitosan microfibers were coated with collage for cell cultivation. In this experiment, the schwann cell and fibroblast cell with chitosan microfibers were used for cell culture. The result of cell culture present that cells proliferate and cover on the surface of chitosan microfibers. This result demonstrates the chitosan microfibers can provide good efficiency for cells, and can be a scaffold for cell culture in tissue engineering application.

    中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XXI 第一章 緒論 1 1-1 前言 1 1-2 纖維絲與幾丁聚醣之應用 2 1-2-1 生物性材料纖維絲之應用 2 1-2-2 幾丁聚醣簡介及其應用 4 1-2-3 幾丁聚醣交聯原理與應用 7 1-3 微流體晶片的發展與應用 9 1-3-1 微機電系統技術與微流體晶片 9 1-3-2 微流體晶片之製程技術 12 1-3-3 微流體晶片之應用 15 1-4 研究動機與目的 19 1-5 研究架構 21 第二章 微流體晶片之設計與製程 23 2-1 微流體數值模擬 24 2-1-1 模型及網格建立 25 2-1-2 模擬環境設定與介紹 27 2-2 PMMA微流體晶片之設計與製作 29 2-2-1 晶片之結構設計 29 2-2-2 晶片之製作流程 33 2-2-3 晶片之接合與組裝技術 37 2-3 PDMS微流體晶片之設計與製作 38 2-3-1 晶片結構與光罩設計 38 2-3-2 1SU-8母模製作 40 2-3-3 1PDMS晶片翻製流程 46 2-3-4 1PDMS晶片接合與組裝技術 51 第三章 實驗方法與研究 54 3-1 實驗儀器與設備 54 3-1-1 旋轉黏度計 54 3-1-2 場放射型掃描式電子顯微鏡 55 3-1-3 微量注射幫浦 56 3-1-4 倒立式螢光光學顯微鏡 57 3-1-5 幾丁聚醣纖維絲實驗平台 58 3-2 實驗材料與調配方法 60 3-2-1 實驗材料與藥品 60 3-2-2 實驗藥劑的配製 61 3-3 實驗方法 63 3-3-1 1PMMA流道製備幾丁聚醣纖維絲實驗 63 3-3-2 1PDMS晶片生成幾丁聚醣纖維絲實驗 66 3-3-3 幾丁聚醣纖維絲細胞適應性實驗 68 第四章 結果與討論 72 4-1 液體層流模擬結果分析 72 4-2 微流體晶片的製備 80 4-2-1 PMMA晶片製程結果 80 4-2-2 PDMS晶片製程結果 82 4-3 幾丁聚醣層流現象之探討 85 4-3-1 1PMMA晶片層流生成之現象 85 4-3-2 1PMMA晶片中流量與層流厚度生成之關係 86 4-3-3 1PDMS晶片層流生成之現象 91 4-3-4 1PDMS晶片中流量與層流厚度生成之關係 93 4-3-5 流道角度差異對層流形成之影響 99 4-4幾丁聚醣纖維絲生成現象 103 4-4-1 PMMA晶片製備幾丁聚醣纖維絲結果 103 4-4-2 PDMS晶片製備幾丁聚醣纖維絲結果 107 4-5 細胞適應性之評估 110 4-5-1 許旺細胞培養結果 111 4-5-2 纖維母細胞培養結果 114 第五章 結論與建議 117 5-1 結論 117 5-2 建議 119 參考文獻 120

    [1] J.O. Hollinger, B.S. Jamiolkowski and S.W. Shalaby, “Biomedical applications of synthetic biodegradable polymers,” CRC Press, 197-222, 1995.
    [2] D.K. Gilding and A.M. Reed, “Biodegradable polymers for use in surgerypolyglycolic/poly (lactic acid) homo-and copolymers: 1,” Polymer, 20, 1459-1464, 1979.
    [3] L. Hinrichs, E. Lommen, C. Wildevuur and J. Feijen. “Fabrication and characterization of an asymmetric polyurethane membrane for use as a wounddressing,” Journal of Applied Biomaterials, 3, 287-303, 1992.
    [4] L. Larrondo and R.S.J. Manley, “Electrostatic fiber spinning from polymer melts. II. examination of the flow field in an electrically driven jet,” Journal of Polymer Science: Polymer Physics Edition, 19, 921-932, 1981.
    [5] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, 43, 4403-4412, 2002.
    [6] F.J. RodrmH guez, N.G. mez, G. Perego and X. Navarro, “Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps,” Biomaterials, 20, 1489-1500, 1999.
    [7] M.D Kazuya Matsumoto, M.D. Katsunori Ohnishi, M.D.T. Kiyotani, M.D.T. Sekine, “Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves,” Brain Research, 868, 315-328, 2000.
    [8] S. Hirano, “Chitin and chitosan as novel biotechnological materials,” Polymer International, 48, 732-734, 1999.
    [9] M.W. Huh, I.K. Kang, D.H. Lee, W.S. Kim, L.S. Park, K.E. Min and K.H. Seo, “Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephalate) prepared by plasma glow discharge,” Journal of Applied Polymer Science, 81, 2769-2778, 2001.
    [10] C.H. Su, C.S. Sun, S.W. Juan and C.H. Hu, “Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes,” Biomaterials, 18, 1169-1174, 1997.
    [11] M.B. Zakaria, W.M.W. Muca, and M.P. Abdulla, “Structure-property relationships in chitin and chitosan,” Chitin and Chitosan: The Versatile Environmentally Friendly Modern Materials, 95-108, 1995.
    [12] F.L. Mi, Sung, H.W. Sung and S.S. Shyu, “Drug release from chitosanalginate complex beads reinforced by a naturally occurring cross-linking agent,” Carbohydrate polymers, 48, 61-72, 2002.
    [13] T. Tianwei, H. Xiaojing and D. Weixia, “Adsorption behaviour of metal ions on imprinted chitosan resin,” Journal of Chemical Technology and Biotechnology, 76, 191-195, 2001.
    [14] H. Onishi and Y. Machida, “Biodegradation and distribution of watersoluble chitosam in mice,” Biomaterials, 20, 175-182, 1999.
    [15] S.B. Rao and C.P. Sharma, “Use of chitosan as a biomaterial: Studies on its satefy and hemostatic potential,”Journal of Biomedical Materials Research, 34, 21-28, 1997.
    [16] K. Roy, H.Q. Mao, S.K. Huang and K.W. Leong, “Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy,” Nature Medicine, 5, 387-391, 1999.
    [17] M.V. Ribud, A.A. Hardikar, S.V. Bhat and R.R. Bhond, “pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery,” Journal of Controlled Release, 68, 23-30, 2000.
    [18] S.V. Madihally and H.W.T. Matthew, “Porous chitisan scaffolds for tissue engineering,” Biomaterials, 20, 1133-1142, 1999.
    [19] G. Peng , Z. Yinghui, L. Jianchun, G. Yandao, Z. Nanming and Z. Xiufang, “Studies on nerve cell affinity of chitosan-derived materials,” Journal of Biomedical Materials Research, 52, 285-295, 2000.
    [20] Y. Yuan, P. Zhang, Y. Yang, X. Wang and X. Gu, “The interaction of Schwann cells with chitosan membranes and fibers in vitro,” Biomaterials, 25, 4273-4278, 2004.
    [21] H.W. Sung, R.N. Huang, L.L. Huang and C.C. Tsai, “In vitro evaluation of cytotoxicity of a naturally occurring crosslinking reagent for biological tissue fixation,” Journal of Biomaterials Science, Polymer Edition, 10, 63-78, 1999.
    [22] F.L. Mi, S.S. Shyu, T.S. Lee and T.B. Wong, “Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method,” Journal of Polymer Science: Part B: Polymer Physics, 37, 1551-1564, 1999.
    [23] S.T. Leea, F.L. Mia, Y.J. Shena and S.S. Shyub, “Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin,” Polymer, 42, 1879-1892, 2002.
    [24] S. Shiraishi, T. Imai and M. Otagiri, “Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in vivo/evalution., Journal of controlled release, 25, 217-225, 1993.
    [25] X.Z. Shu, K.J. Zhu, “Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure,” International Journal of Pharmaceutics, 233, 217-225, 2002.
    [26] K. Seiler, D.J. Harrison and A. Manz, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monition Systems,” Journal of Chromatography, 593, 253-258, 1992.
    [27] Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, 551-575, 1998.
    [28] D. Snakenborg, H. Klank and J.P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, 182-189, 2004.
    [29] K.S. Huang, T.H. Lai and Y.C. Lin, “Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, 6, 954-957, 2006.
    [30] K.S. Huang, T.H. Lai, Y.C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, 12, 3061-3067, 2006.
    [31] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, 69, 4783-4789, 1997.
    [32] H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, 11, 297-304, 1999.
    [33] M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, 122-124, 1998.
    [34] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators a-Physical, 83, 130-135, 2000.
    [35] R.M. McCormick, R.J. Nelson, M.G. AlonsoAmigo, J. Benvegnu, and H.H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, 2626-2630, 1997.
    [36] P.J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, 37-38, 1953.
    [37] D.A. Drew and R.T. Lahey, “Phase-distribution mechanisms in turbulent low-quality 2-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, 91-106, 1982.
    [38] J. Takagi, M. Yamada, M. Yasuda and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab on a Chip, 5, 778, 2005.
    [39] S.L. Anna, N. Bontoux and H.A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, 82, 364-366, 2003.
    [40] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, 7629-7632, 2005.
    [41] K. Liu, H.J. Ding, J. Liu, Y. Chen and X.Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, 9453-9457, 2006.
    [42] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” Journal of the American Chemical Society, 128, 12205-12210, 2006.
    [43] http://www.microchem.com/, Specialty electronic materials for emerging and niche lithographic processes, 2005.
    [44] M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, “Improving the process capability of SU-8,” Microsystem Technologies, 10, 1-6, 2003.
    [45] H. Andersson, C. Jönsson, C. Moberg and G. Stemme,” Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, 79, 78-84, 2001.
    [46] M.J. Owen and P.J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, 1063, 1994.
    [47] W.Z. Douglas, “The microenvironment of injured and regenerating peripheral nerves,” Muscle&Nerve, 9, 33-38, 2000.

    無法下載圖示 校內:2028-08-26公開
    校外:2028-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE