簡易檢索 / 詳目顯示

研究生: 洪天賜
Angjaya, Stephen Sean
論文名稱: 電化學沉積釕/氧化(亞)銅薄膜應用於光催化降解亞甲基藍
Electrochemical deposition of Ru/CuxO (x = I or II) thin film for photocatalytic degradation of methylene blue
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 96
中文關鍵詞: 氧化銅光催化降解電化學沉積亞甲基藍
外文關鍵詞: copper oxides, electrochemical deposition, photodegradation, methylene blue
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用電化學沉積在金屬銅片基板上製備氧化銅(Copper oxides)、並將其應用於光催化降解亞甲基藍。其實驗參數分別為:氫氧化鉀濃度、掃描速率、退火溫度、找出最適化條件之氧化銅(Copper oxides)、其用於光催化降解亞甲基藍有最好之效能。 其中以X射線繞射分析(X-ray Diffractometer, XRD)鑑定氧化銅在未退火和退火處理過後晶相結構的改變,掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析樣品的形貌、能量色散X射線譜(Energy-dispersive X-ray spectroscopy, EDS)分析氧化銅元素。最後進行對光催化降解亞甲基藍的效能探討、本實驗室用可見光的鎢絲燈作為光源,來光催化降解亞甲基藍溶液、並以光纖可見光光譜儀測量其吸收計算濃度的變化。為了提升光催化降解亞甲基藍的效能、修飾金屬釕於氧化銅上。由實驗結果得知、以製備出氧化銅、其降解率為41.6%。退火處理後、發現降解率變差為39.4%。修飾釕於氧化銅後、其光催化亞甲基藍降解率高達80.6%。

    In this work, copper oxides were deposited using electrochemical deposition. Copper foil was chosen as a substrate for the fabrication of copper oxides. Copper oxides were performed by cyclic voltammetry. Fabrication of copper oxides depends on electrolyte concentration, scan rate, and annealing temperature. Copper oxides was characterized by an X-ray diffractometer (XRD), high-resolution scanning electron microscope (HR-SEM), and energy dispersive spectrometer (EDS). Copper oxides are applied for photodegradation of methylene blue dye, and it is illuminated by a tungsten halogen lamp. The lamp is illuminated to degrade methylene blue dye. To enhance the photodegradation activity of copper oxides in methylene blue, copper oxides are deposited by noble metal ruthenium to increase the separation efficiency of photodegradation. The degradation rate of MB increased from 41.6% to 80.6%.

    Acknowledgement I 中文摘要 II Abstract III Contents IV List of figures VII List of tables XI Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 2 1-3 Goals 5 Chapter 2 Literature review and principles 6 2-1 Experimental principles 6 2-1-1 Copper Oxides 6 2-1-2 Electrochemistry 7 2-1-3 Anodization method 8 2-1-4 Annealing 12 2-1-5 Photocatalyst 13 2-1-6 Methylene blue 15 2-1-7 Analysis of photodegradation 18 2-1-8 Photodeposition 21 2-2 Instrumental principle 24 2-2-1 Cyclic voltammetry 24 2-2-2 X-ray diffraction 26 2-2-3 Scanning electron microscope 28 2-2-4 Energy-dispersive X-ray spectroscopy 30 2-2-5 UV-Vis spectrophotometry 31 Chapter 3 Experimental sections 34 3-1 Flow of experiment 34 3-2 Materials and chemicals 35 3-3 Instruments 35 3-4 Experimental steps 37 3-5 Ruthenium deposite copper oxides 39 3-6 Photodegradation of methylene blue 39 Chapter 4 Result and Discussion 42 4-1 Fabrication of copper oxides 42 4-1-1 Electrolyte concentrations 42 4-1-2 Scan rates 46 4-1-3 Annealing 49 4-2 Elemental composition of copper oxides 51 4-3 Analysis crystal structure of copper oxides 52 4-3-1 Pretreatment and without pretreatment copper foil 52 4-3-2 After deposite copper oxides 53 4-3-3 Effect of annealing copper oxides 55 4-3-4 Effect of annealing copper oxides from different scan rates 58 4-3-5 Effect of annealing copper oxides from different concentrations 62 4-4 Ruthenium deposite copper oxides 67 4-5 Analysis photodegradation of methylene blue 69 4-5-1 Effect scan rates for photodegradation of methylene blue 69 4-5-2 Effect concentrations for photodegradation of methylene blue 72 4-5-3 Effect annealing temperature for photodegradation of methylene blue 75 4-5-4 Effect Ru deposite copper oxides for photodegradation of methylene blue 78 Chapter 5 Conclusions 83 References 85 Appendix I 93

    [1] T.H. Tran, V.T. Nguyen, Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review, International Scholarly Research Notices, 2014 (2014) 1-14.
    [2] M.M. Rahman, Introductory Chapter: Fundamentals of Semiconductor Photocatalysis, IntechOpen, 2019.
    [3] T.J. Whang, M.T. Hsieh, H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles, Applied Surface Science, 258 (2012) 2796-2801.
    [4] T.J. Whang, H.Y. Huang, M.T. Hsieh, J.J. Chen, Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue, International Journal of Molecular Sciences, 10 (2009) 4707-4718.
    [5] E.M.H.E. Yunus, N.A.A. Hamid, Photodegradation of methylene blue using copper oxide prepared by hydrothermal method, AIP Conference Proceedings, 2124 (2019) 1-8.
    [6] K. Rastogi, J.N. Sahu, B.C. Meikap, M.N. Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of Hazardous Materials, 158 (2008) 531-540.
    [7] G. Mcmullan, T. Robinson, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative, Bioresource Technology, 77 (2001) 247-255.
    [8] V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, Journal of Environmental Chemical Engineering, 6 (2018) 4676-4697.
    [9] K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: A Review, Chemical Reviews, 116 (2016) 14587-14619.
    [10] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, 60 (2014) 208-337.
    [11] F.P. Hernandez, A.L. Luna, C.C. Justin, P. Santiago, M.G. Rocha, G.V. Aguilar, M.A. Valenzuela, Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on photocatalytic activity under visible light, Journal of Saudi Chemical Society, 23 (2019) 1016-1023.
    [12] T. Govindaraj, C. Mahendran, V.S. Manikandan, J. Archana, M. Shkir, J. Chandrasekaran, Fabrication of WO3 nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of ciprofloxacin and rhodamine b in an ecosystem, Journal of Alloys and Compounds, 868 (2021) 1-13.
    [13] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of rhodamine b dye, Chemical Engineering Journal, 169 (2011) 126-134.
    [14] C.C. Hwang, C.S. Lin, Synthesis of nano-sized zinc oxide photocatalyst by combustion method, Journal of the Chinese Chemical Society, 55 (2008) 1266-1271.
    [15] N.D. Khiavi, R. Katal, S.K. Eshkalak, S.M. Panah, S. Ramakrishna, H. Jiangyong, Visible light driven heterojunction photocatalyst of CuO-Cu2O thin films for photocatalytic degradation of organic pollutants, Nanomaterials (Basel), 9 (2019) 1-12.
    [16] E. Vivek, N. Senthilkumar, A. Pramothkumar, M. Vimalan, I.V. Potheher, Synthesis of flower-like copper oxide microstructure and its photocatalytic property, Physica B: Condensed Matter, 566 (2019) 96-102.
    [17] M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method, Applied Surface Science, 254 (2008) 7477-7481.
    [18] J.E.C. Crespo, A.M.H. Flores, L.M.T. Martinez, I.J. Ramirez, Effect of the Cu foam pretreatment in the growth and inhibition of copper oxide nanoneedles obtained by thermal oxidation and their evaluation as photocathodes, Materials Science in Semiconductor Processing, 102 (2019) 1-8.
    [19] G.Q. Yuan, H.F. Jiang, C. Lin, S.J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals, Journal of Crystal Growth, 303 (2007) 400-406.
    [20] M.P. Rao, P. Sathishkumar, R.V. Mangalaraja, A.M. Asiri, P. Sivashanmugam, S. Anandan, Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes, Journal of Environmental Chemical Engineering, 6 (2018) 2003-2010.
    [21] J. Akter, K.P. Sapkota, M. Abu Hanif, M.A. Islam, H.G. Abbas, J.R. Hahn, Kinetically controlled selective synthesis of Cu2O and CuO nanoparticles toward enhanced degradation of methylene blue using ultraviolet and sun light, Materials Science in Semiconductor Processing, 123 (2021) 1-12.
    [22] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chemistry of Materials, 14 (2002) 2812-2816.
    [23] X. Deng, C. Wang, E. Zhou, J. Huang, M. Shao, X. Wei, X. Liu, M. Ding, X. Xu, One-step solvothermal method to prepare Ag/Cu2O composite with enhanced photocatalytic properties, Nanoscale Research Letters, 11 (2016) 1-12.
    [24] K. Vikrant, S. Weon, K.H. Kim, M. Sillanpää, Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants, Applied Materials Today, 23 (2021) 1-39.
    [25] P. Li, Z. Zhuang, Z. Zhang, J. Guo, Z. Fang, W. Chen, Interfacial heterojunction construction by introducing Pd into W18O49 nanowires to promote the visible light-driven photocatalytic degradation of environmental organic pollutants, Journal of Colloid and Interface Science, 590 (2021) 518-526.
    [26] D. Jiang, Y. Zhang, X. Li, Synergistic effects of CuO and Au nanodomains on Cu2O cubes for improving photocatalytic activity and stability, Chinese Journal of Catalysis, 40 (2019) 105-113.
    [27] R. Navarro, F. Delvalle, J. Fierro, Photocatalytic hydrogen evolution from CdS–ZnO–CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts, International Journal of Hydrogen Energy, 33 (2008) 4265-4273.
    [28] B.J. Hwang, H.L. Chou, C.L. Sun, Catalysis in Fuel Cells and Hydrogen Production, New and Future Developments in Catalysis, Elsevier, 2013.
    [29] D. Giziński, A. Brudzisz, J.S. Santos, F.T. Strixino, W.J. Stępniowski, T. Czujko, Nanostructured anodic copper oxides as catalysts in electrochemical and photoelectrochemical reactions, Catalysts, 10 (2020) 1-38.
    [30] A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K.K. Zadeh, Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications, Journal of Materials Chemistry C, 2 (2014) 5247-5270.
    [31] M.Z. Sahdan, M.F. Nurfazliana, S.A. Kamaruddin, Z. Embong, Z. Ahmad, H. Saim, Fabrication and characterization of crystalline cupric oxide (CuO) films by simple immersion method, Procedia Manufacturing, 2 (2015) 379-384.
    [32] L.R. Faulkner, A.J. Bard, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons. Inc, New York, 2001.
    [33] W.J. Stepniowski, W.Z. Misiolek, Review of fabrication methods, physical properties, and applications of nanostructured copper oxides formed via electrochemical oxidation, Nanomaterials (Basel), 8 (2018) 1-19.
    [34] B.Beverskog, I. Puigdomenech, Revised pourbaix diagrams for copper at 25 to 300°C, Journal of The Electrochemical Society, 144 (1997) 3476-3483.
    [35] N.K. Allam, C.A. Grimes, Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes, Materials Letters, 65 (2011) 1949-1955.
    [36] F. Xiao, S.J. Yuan, B. Liang, G.Q. Li, S.O. Pehkonen, T.J. Zhang, Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion, Journal of Materials Chemistry A, 3 (2015) 4374-4388.
    [37] L. Shooshtari, R. Mohammadpour, A.I. Zad, Enhanced photoelectrochemical processes by interface engineering, using Cu2O nanorods, Materials Letters, 163 (2016) 81-84.
    [38] Y. Wan, Y. Zhang, X. Wang, Q. Wang, Electrochemical formation and reduction of copper oxide nanostructures in alkaline media, Electrochemistry Communications, 36 (2013) 99-102.
    [39] F.C. Briones, A.P. Padrós, O. Calzadilla, F. Sanz, Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization, Electrochimica Acta, 55 (2010) 4353-4358.
    [40] Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy, Journal of Materials Chemistry, 22 (2012) 2456-2464.
    [41] F.C. Briones, J.M. Artes, I.D. Perez, P. Gorostiza, F. Sanz, Direct observation of the valence band edge by in situ ECSTM-ECTS in p-type Cu2O layers prepared by copper anodization, Journal of Physical Chemistry C, 113 (2009) 1028-1036.
    [42] X. Shu, H. Zheng, G. Xu, J. Zhao, L. Cui, J. Cui, Y. Qin, Y. Wang, Y. Zhang, Y. Wu, The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties, Applied Surface Science, 412 (2017) 505-516.
    [43] Y.Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires, Journal of Nanomaterials, 2012 (2012) 1-22.
    [44] X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, CuO nanowires prepared via a facile solution route and their photocatalytic property, Materials Letters, 72 (2012) 49-52.
    [45] C. Hou, B. Hu, J. Zhu, Photocatalytic Degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH, Catalysts, 8 (2018) 1-13.
    [46] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31 (2001) 145-157.
    [47] J.F. Luan, B.C. Pan, Y. Paz, Y.M. Li, X.S. Wu, Z.G. Zou, Structural, photophysical and photocatalytic properties of new Bi2SbVO7 under visible light irradiation, Physical Chemistry Chemical Physics, 11 (2009) 6289-6298.
    [48] K.H. Tseng, M.Y. Chung, C.Y. Chang, T.S. Cheng, A study of photocatalysis of methylene blue of TiO2 fabricated by electric spark discharge method, Journal of Nanomaterials, 2017 (2017) 1-8.
    [49] S.K. Das, R. Sahoo, Ultraviolet photocatalytic dye decomposition of malachite green dye by using cost effective ZnO nanoparticles, AIP Conference Proceedings, 2166 (2019) 020021-1–020021-5.
    [50] J.O. Osarumwense, N.A. Amenaghawon, F.A. Aisien, Heterogeneous photocatalytic degradation of phenol in aqueous suspension of periwinkle shell ash catalyst in the presence of uv from sunlight, Journal of Engineering Science and Technology, 10 (2015) 1525-1539.
    [51] K. Vasanthkumar, K. Porkodi, A. Selvaganapathi, Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of auramine O aqueous solutions by ZnO catalyst, Dyes and Pigments, 75 (2007) 246-249.
    [52] A.G. Vondjidis, W.C. Clark, An infrared study of the photocatalytic reaction between titanium dioxide and silver nitrate, Journal of Catalysis, 4(1965) 691-696.
    [53] J.G. Traynham, C.R. Everly, Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates, Journal of the American Chemical Society, 100 (1978) 4317-4318.
    [54] D.C. Harris, Quantitative Chemial Analysis, W. H. Freeman and Company, New York, 2010.
    [55] A.A. Bunaciu, E.G. Udristioiu, H.Y.A. Enein, X-ray diffraction: Instrumentation and applications, Critical Reviews in Analytical Chemistry, 45 (2015) 289-299.
    [56] S.K. Sharma, Handbook of Materials Characterization, Springer International Publishing AG, Switzerland, 2018.
    [57] C.E. Lyman, J.I. Goldstein, D.E. Newbury, Scanning Electron Microscopy and X-Ray Microanalysis, Kluwer Academic 1 Plenum, New York, 2003.
    [58] R.R. Shah, R.S Shah, R.B. Pawar, P.P. Gayakar, UV-Visible spectroscopy - A review, International Journal of Institutional Pharmacy and Life Sciences, 5 (2015) 490-505.
    [59] J.Y. Park, T.H. Kwon, S.W. Koh, Y.C. Kang, Annealing temperature dependence on the physicochemical properties of copper oxide thin Films, Bulletin of the Korean Chemical Society, 32 (2011) 1331-1335.
    [60] A.U. Rehman, M. Aadil, S. Zulfiqar, P.O. Agboola, I. Shakir, M.F.A. Aboud, S. Haider, M.F. Warsi, Fabrication of binary metal doped CuO nanocatalyst and their application for the industrial effluents treatment, Ceramics International, 47 (2021) 5929-5937.
    [61] N.F.A. Neto, P.M. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Enhanced photocatalytic properties of zinc-doped CuO decorated with silver obtained by microwave-assisted hydrothermal method: Statistical factorial design, Journal of Electronic Materials, 48 (2019) 4840-4849.
    [62] N. Ekthammathat, A. Phuruangrat, T. Thongtem, S. Thongtem, Synthesis and characterization of Ce-doped CuO nanostructures and their photocatalytic activities, Materials Letters, 167 (2016) 266-269.
    [63] R.X. Chen, S.L. Zhu, J. Mao, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, Synthesis of CuO/Co3O4 coaxial heterostructures for efficient and recycling photodegradation, International Journal of Photoenergy, 2015 (2015) 1-11.
    [64] A.M. El Sayed, M. Shaban, Structural, optical and photocatalytic properties of Fe and (Co, Fe) co-doped copper oxide spin coated films, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149 (2015) 638-646.
    [65] M.U. Khalid, M.F. Warsi, M.I. Sarwar, P.O. Agboola, I. Shakir, S. Zulfiqar, Visible light driven photocatalytic activity of unsubstituted and Ag1+ / Al3+-substituted CuO nanoflakes, Ceramics International, 46 (2020) 14287-14298.
    [66] L. Xu, C. Srinivasakannan, J. Peng, L. Zhang, D. Zhang, Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation, Journal of Alloys and Compounds, 695 (2017) 263-269.

    無法下載圖示 校內:2026-08-16公開
    校外:2026-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE