| 研究生: |
許育誠 Hsu, Yu-Chen |
|---|---|
| 論文名稱: |
手機體感遊戲使用者之科技接受度分析 User Acceptance of Mobile Sensing Game Technology |
| 指導教授: |
陳淑惠
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系碩士在職專班 Department of Business Administration (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 體感控制器 、手機體感遊戲 、知覺有趣 、流暢體驗 、科技接受模式 |
| 外文關鍵詞: | Motion Sensing Games, TAM, Motion Controller, Flow Experience, Perceived Enjoyment |
| 相關次數: | 點閱:107 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試透過實證研究,了解消費者對手機體感遊戲的科技接受度及影響其科技接受度的因素。
從過去數十年間的文獻中,得知TAM (Technology Acceptance Model, Davis, 1986)已被廣泛地應用在測試消費者對創新產品的接受度研究上,因此,TAM提供了研究者一個簡潔並且合乎具體理論的研究架構,但TAM仍有其限制,僅侷限於認知當消費者面對科技接受度的解釋,並無針對情感因素做進一步的討論。為了能更全面性地了解影響消費者科技接受度的因素,本研究採用多位學者的建議(Davis et al., 1989; Jo, Beak, & Ryu, 2001),加入知覺有趣(Perceived Enjoyment)來整合情感面的觀點。另外,學者 Hsu and Lu(2004)的研究也發現流暢體驗越高的消費者對創新性產品的接受度越高。因此,本研究整合了TAM、知覺有趣、沉浸體驗(Flow
Experience)的觀點來探討消費者對於手機體感遊戲的科技接受度。透過網路及紙本問卷來進行調查,而考量到樣本數目及實際使用經驗,我們採用紙本回收者來進行研究分析。因紙本回收者在進行手機體感遊戲後填寫問卷,具有較高的研究效度。
經過SEM 實證分析後發現:知覺易用性、知覺有趣以及沉浸體驗對於使用者的使用態度有正面的影響,而其使用態度也會影響使用者最終的採用意圖,另外,知覺易用性對於使用態度的影響並不明顯。最後,本研究也針對體感遊戲手機 (Motion Sensor Gaming Phone)的產品開發與市場行銷人員提供建議。
This research intends to examine uer technology acceptance status toward the newest entertainment technology: Mobile sensing game.
TAM theory (Davis, 1986) has been broadly cited for providing the parsimonious and theoretically results in past few decades. As the TAM theory stands alone from the point of cognition, recent studies suggest that affection factors should be integrated to deep in the explanation of technology acceptance; as a result, the perceived enjoyment (Davis et al., 1989; Jo, Beak, & Ryu, 2001) is adopted. Furthermore, prior studies found there was a positive relationship between flow experience and attitude (Hsu and Lu, 2004). Therefore, this research combined all above mentioned factors to examine user technology acceptance toward mobile sensing game. Data were collected through face-to-face interview and web-based questionnaire, and concerning to the numbers and validity, we choose the face-to-face group to carry on the following analysis. Because this group were asked to do the survey after playing mobile sensing game
The SEM results suggested that perceived ease of use, perceived enjoyment and flow experience were significantly impacted individual’s attitude toward adoption while perceived usefulness was proved not significantly impacted attitude toward adoption in this study. The findings also suggested positive relationship between attitude toward adoption and behavior intention to use as TAM stated. In addition, this research provides several suggestions to practitioners who are interested in the management of motion sensor gaming phone development.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and pre-dicting social behavior. NJ: Pren-tice-Hall.
Atkin, D., & LaRose, R. (1994). Profiling call-in poll users. Journal of Broadcasting & Electronic Media, 38(2), 217-227.
Bagozzi, R. P. & Phillips, L. W. (1982). Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459-489.
Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16, 74–94.
Bruner II, G. C., & Kumar, A. (2005). Applying T.A.M. to consumer usage of handheld Internet devices. Journal of Business Research, 58, 553–558.
Calder, B. J., Phillips, L. W., & Tybout, A. M. (1981). Designing research for application. Journal of Consumer Research, 8 (2), 197-207
Chang, M. K., & Cheung, W. (2001). Determinants of the intention to use Internet/ WWW at work: A confirmatory study. Information & Management, 39, 1–14.
Chen, H., Wigand, R. & Nilan, M. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5), 585–608.
Childers, T.L., Carr, C.L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77, 511-535.
Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. CA: Jossey-Bass.
Csikszentmihalyi, M.& LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56 (5), 815-822.
Csikzentmihalyi, M. (1990). Flow, the Psychology of Optimal Experience. NY: Harper & Row.
Csikszentmihalyi, M. (1992). Flow: The Psychology of Happiness. London: Random House.
Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. NY: Harper Perennial.
Dabholkar, P.A. (1996). Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29-51.
Davis, F.D (1986). A technology acceptance model for empirically testing new end-user information system: theory and results. MA : Cam-bridge.
Davis, F.D., (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–339.
Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1003.
Davis, F.D., Bagozzi, R.P., Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22, 1111-1132.
Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior. Journal of Personality and Social Psychology, 53, 1024 - 1037.
Dutton, W. Rogers, E. & Jun, S. (1987). Diffusion and Social Impacts of Personal Computers. Communication Research, 14, 219-250.
Fishbein, M., and Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. MA: Addison-Wesley.
Gentry, L. & Calantone, R. (2002). A comparison of three models to explain shop-bot use on the web. Psychology & Marketing, 19(11), 945-956.
Hair, J. F. Black, B., Babin, b., Anderson, R. E., and Tatham, R. L. (2006). Multivarate Data Analysis (6th Ed.). NJ: Prentice Hall.
Hayduck, L. (1987). Structural Equation Modeling with LISREL. MD: Johns Hopkings University Press.
Horrigan, J. (2007). The typology of information and communication technology users, Retrieved May 06 2009, from
http://jclat.typepad.com/memotechnique/files/PIP_ICT_Typology.pdf
Hsu, C.L. & Lu, H.P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853–868.
Igbaria, M., Schiffman, S. J., & Wieckowshi, T. S. (1994). The respective roles of perceived usefulness and perceived fun in the acceptance of microcomputer technology. Behavior and Information Technology, 13(6), 349-361.
Jo, N. J., Beak, S. I., & Ryu, K. M. (2001). An exploratory investigation of player loyalty to online games. Korean Operations Research and Management Science Society, 26 (2), 85–97.
Jones, K. (1998). What happens when students design and run their own simulations? Simulation and Gaming, 29(3), 342-347.
Jöreskog, K.G. and Sörbom, D. (1993). LISREL8.14: Structural Equation Modeling with the SIMPLIS Command Language. Chicago: Scientific Software International.
Kao, Y. C. (2006). A Study on the User Acceptance Model Analysis of Mobile Tour-Guide Service - A View of Diffusion of Innovation. Tatung University, Taipei.
Kubovy, M. (1999). On the pleasures of the mind. In D. Kahneman, E. Diener, & N. Schwarz(Eds.), Well-being:The foundations of hedonic psychology (pp. 134-154.) NY: Rusell Sage Foundation.
Kulviwat, S., G. C. Bruner Ii, et al. (2007). Toward A Unified Theory of Consumer Acceptance Technology. Psychology & Marketing, 24(12), 1059-1084.
Lee, S. C., Kim, N. H., Seo, Y. H. (2003). The effects of flow and addiction upon satisfaction and customer loyalty in the on-line games. The Korea Society of Management Information Systems, 32(5), 1479–1501.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38, 217-230.
Novak, T., Hoffman, D., & Yung, Y. (2000). Measuring the customer experience in online environment: a structural modeling approach. Marketing Science, 19(1), 22–44.
Picard, R. W. (1998). Affective computing. MA: MIT Press.
Robinson, J. P., & Shaver, P. R. (1973). Measures of Social Psychological Attitudes. Ann Arbor: Institute of Social Research.
Sally, M., W. Heidi, et al. (2006). Applying the technology acceptance model to the online retailing of financial services. International Journal of Retail & Distribution Management, 34, 388-410.
Scott, J. E. (1994). The measurement of information systems effectiveness: evaluating a measuring instrument. Proceedings of the Fifteenth International Conference on Information Systems, Vancouver, British Columbia, 111-128.
Shen, C. T. (2006). An Investigation on User Communication Behavior in Computer Mediated Environment: Derived from Interactivity, TAM, and Flow Theory. National Cheng Kung University, Tainan.
Steinfield, C. W., Dutton, W. H., & Kovaric, P. (1989). A framework and agenda for research on computing in the home. In J. L. Salvaggio & J. Bryant (Eds.) Media use in the information age: Emerging patterns of adoption and consumer use (pp. 61-85). Hillsdale, NJ: Erlbaum.
van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in the Netherlands. Information & Management, 40(6), 541-549.
van der Heijden, H.(2004).User acceptance of hedonic information system. MIS Quarterly, 28(4), 695-704.
Vellerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. Advance Experiment Social Psychology, 29, 271–360.