| 研究生: |
黃建霖 Huang, Chine-Lin |
|---|---|
| 論文名稱: |
經互穿網狀(IPN)途徑對聚醯亞胺與環氧樹脂二高分子材料低介電化 Using IPN method to improve Dielectric properties on Polyimide and Epoxy resin |
| 指導教授: |
王春山
Wang, Chung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 互穿網 、低介電 、聚醯亞胺 、環氧樹脂 |
| 外文關鍵詞: | interpenetrating polymer networks, low dielectric, Epoxy, Polyimide, TAIC, BMI |
| 相關次數: | 點閱:143 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以Bismaleimide(BMI)和triallyl isocyanurate(TAIC)兩單體分別以不同比例與聚醯亞胺、Bisphenol A(BPA)型的環氧樹脂(Epoxy)二材料分別混摻,使單體聚合而形成互穿網狀高分子結構,並探討聚醯亞胺與環氧樹脂二高分子材料分別以IPN混摻後,對物性與介電性質有何種影響。
由實驗的結果得知,聚醯亞胺與含氟聚醯亞胺分別與TAIC、BMI以IPN混摻後,隨著TAIC與BMI的混摻量的提高,介電常數會跟著下降。聚醯亞胺混摻物的極限黏度範圍在0.4~1.4 dl/g之間,而且有良好的熱安定性。聚醯亞胺混摻物的介電常數在1GHz電場下,是介於2.39U到2.15U之間。在玻璃轉移溫度方面,聚醯亞胺IPN混摻物以DMA測量是介於224-353℃。聚醯亞胺以IPN混摻TAIC與BMI,在混摻30wt%時,最適合在軟性印刷電路板之應用。
含氟聚醯亞胺與TAIC、BMI以IPN混摻後,隨著TAIC與BMI的混摻量的提高,介電常數也跟著下降。聚醯亞胺混摻物的極限黏度範圍在0.53~2.56 dl/g之間,而且有良好的熱安定性。聚醯亞胺混摻物的介電常數在1GHz電場下,是介於2.32U到2.02U之間,其介電性質比聚醯亞胺以IPN混摻TAIC、BMI來的低。在玻璃轉移溫度方面,聚醯亞胺IPN混摻物以DMA測量是介於199-296℃。含氟聚醯亞胺以IPN混摻TAIC與BMI,在混摻30wt%時,最適合在軟性印刷電路板之應用。
在環氧樹脂方面也有相同的結果,以IPN混摻TAIC、BMI後,隨著TAIC與BMI的混摻量的提高,介電常數也跟著下降。環氧樹脂混摻物有良好的熱安定性與尺寸安定性,而且有良好的難燃性和耐吸濕性。環氧樹脂混摻物的介電常數在1GHz電場下,是介於3.24U到2.88U之間。在玻璃轉移溫度方面,聚醯亞胺IPN混摻物以DMA測量是介於171~201℃。環氧樹脂以IPN混摻TAIC與BMI,在混摻50wt%時,最適合在硬性印刷電路板之應用。
Bismaleimide and triallyl isocyanurate are polymerized inside two different kinds of polymers (polyimide and bisphenol A epoxy resin), to form interpenetrating polymer networks. The primary object of this work was to illustrate the effect of wt% of TAIC and BMI in IPNs blends on the properties of polymers, especially the dielectric property.
According to experimental results, the more TAIC and BMI content in IPNs blends with polyimide, the better dielectric property. The intrinsic viscosities of polyimide blends were in the range of 0.4~1.4 dl/g. These polymers were thermally quite stable. The dielectric constant of these these polyimide blends were ranged from 2.39U to 2.15U at 1GHz. The glass transition temperature of these polyimide blends were in the range of 224-353℃by DMA. The 30 wt% of TAIC and BMI in IPNs blends with polyimide had the best properties to be used in flexible circuit board.
The fluorine containing polyimide had the same result, the more TAIC and BMI content in IPNs blends with fluorine containing polyimide, the better dielectric property. The intrinsic viscosities of fluorine containing polyimide blends were in the range of 0.53~2.56 dl/g. These polymers were thermally quite stable. The dielectric constant of these fluorine containing polyimide blends were ranged from 2.32 U to 2.02 U at 1GHz. Their dielectric constants are lower than TAIC and BMI in IPNs blends with non-fluorine containing polyimide. The glass transition temperature of these fluorine containing polyimide blends were in the range of 199-296℃by DMA. The 30 wt% of TAIC and BMI in IPNs blends with the fluorine containing polyimide had the best properties to be used in flexible circuit board.
The epoxy resin had the same result, the more TAIC and BMI content in IPNs blends with epoxy resin, the better dielectric property. These polymers were thermally and dimentionally quite stable. They also had very good flame resistance and low moisture absorption. The dielectric constant of these epoxy resin blends were ranged from 3.24 U to 2.88 U at 1GHz. The glass transition temperature of these epoxy resin blends were in the range of 171~201℃by DMA. The 50 wt% of TAIC and BMI in IPNs blends with epoxy had the best properties to be used in hard plastic board.
1.產業經濟,第190期。
2.中華民國工業生產統計月報,工研院材料所,IT IS計畫,2000。
3.黃仕穎,陳永志,電子與材料雜誌,11,109-115,2001。
4.郭耀興,塑膠資訊,3,30-38,2000。
5.Richard K. Pitler,et al. ”Engineering Plastics”,ASM International P.240~P.267(1998)。
6.Joel R. Fried, “Polymer Science And Technology”, Prentice-Hall, P.251~P.278, 1995.
7.L. H. Sperling, “Introduction to Physical Polymer Science”, John Wiley & Sons, 3rd, P.577~P.651
8.Georoge Odian, “Principles of Polymerization”, John Wiley & Sons, 3rd, P.149~P.148, 1991.
9.U.S. Pat. 2731447, 1956
10.C. E. Sroog, J. Polym. Sci. Macromol. Rev., 11, 161, 1976
11.江選雅,化工資訊,43-28,1999.7
12.簡雅惠,化工資訊,25-32,2000.7
13.劉韋志,陳文章,塑膠資訊,40,P.16,2000
14.A. Matsumoto, K. Watanabe, H. Aota, Y. Takayama, A. Kameyama, T. Nakanishi, Polymer, vol 41, 3883-3886, 2000.
15.A. Matsumoto, F. Hirai, Y. Sumiyama, H. Aota, Y. Takayama, A. Kameyama, T. Nakanishi, Eur. Polym. J.,vol 35, 195-199, 1999
16.王春山,化工技術,2(10),P.54~P.57,1994。
17.王春山,化工技術,2(11),P.120~P.123,1994。
18.王春山,化工技術,2(12),P.129~P.132,1994。
19.王春山,化工技術,3(1),P.166~P.179,1995。
20.王春山,何宗漢,工程月刊,第72卷11期,P.19~P.28,1999。
21.Chun-Shan Wang and Tsu-Shan Leu, Polym., 41, 3581-3591,2000
22.Y. L. Liu, G. H. Hsiue, Y. S. Chiu, Polym. Sci. PartA:Polym. Chem.,35(n3),565,1997
23.F. J. Hua and C. P. Hu, Eur. Polym. J.,vol 36, 27-33,2000
24.John C. Phelan and Chong Sook Paik Sung, Macromolecules, 30, 6845-6851, 1997.
25.日本特開2000-256627,2000。
26.日本特開2000-17147,2000。
27.王明偉,「雙酚A丙烯酸與環氧樹脂全互穿網之研究」,交通大學應用化學碩士論文,1996。
28.林一甫,「環氧樹脂添加聚氧化二甲苯摻合改質之探討」,長庚大學化工與材料工程碩士論文,2001
29.吳榮宴,「低介電酚醛環氧樹脂製備及其積層電路板特性研究」,長庚大學化工與材料工程碩士論文,2001
30.黃漢章,「新穎含奈馬來醯亞胺樹脂」,國立成功大學化學工程研究所博士論文,1996。
31.楊榮文,「高性能含多氟基聚醯亞胺」,國立成功大學化學工程研究所博士論文,1998。
32.黃登旺,「含矽聚醯亞胺合成與性質之研究」,國立成功大學化學工程研究所碩士論文,1998。
33.蔡東穎,「可溶性聚醯亞胺之研究」,國立成功大學化學工程研究所碩士論文,1998。
34.楊曉玲,「可溶性聚醯亞胺之合成與性質研究」,國立成功大學化學工程研究所碩士論文,2001。
35.許倍瑄,「可溶性聚酯醯亞胺的合成及性質探討」,國立成功大學化學工程研究所碩士論文,2002。
36.江正榮,「Dipentene 型環氧樹脂之合成、特性及其高性能衍生物」,國立成功大學化學工程研究所碩士論文(2001)。
37.利俊鴻,「電子用低介電材料之合成與性質研究」,國立成功大學化學工程研究所碩士論文(2002)。
38.蔣榮中「Dicyclopentadiede 形環氧樹脂之合成、特性及其高能衍生物」,碩士論文,2001
39.Z.G. Qian, Z.Y. Ge, Z.X. Li, M.H. He, J.G. Liu, Z.Z. Pang, L. Fan, S.Y. Yang, Polym., 43, 6057-6063, 2002
40.吳朗,電子陶瓷-介電,全欣資訊圖書,43-117,1994
41.田惠慧編,電工與電子材料基礎,五南圖書,188-190,2002
42.日本特開2000-143982,2000。
43.日本特開2000-143983,2000。
44.日本特開2000-294251,2000。
45.日本特開2001-6437,2001。
46.日本特開2001-81429,2001。
47.日本特開2002-56718,2002。
48.日本特開2002-69419,2002。
49.日本特開2002-53818,2002。
50.日本特開2002-80815,2002。
51.日本特開2001-329246,2001。