簡易檢索 / 詳目顯示

研究生: 余蕙茹
Yu, Hui-Ru
論文名稱: 銅-鑭系金屬團簇之合成、結構及磁性研究
Syntheses, structures, and magnetic properties of heterometallic copper(II)-lanthanide complexes
指導教授: 蔡惠蓮
Tsai, Hui-Lien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 264
中文關鍵詞: 單分子磁鐵銅-鑭系混金屬化合物β-雙酮
外文關鍵詞: Single molecule magnets (SMMs), Cu/Ln complexes, β-diketone
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分成三個章節。章節一:利用HL與Ln(ClO4)3和CuCl2合成出一系列的化合物[CuIILnIII(μ2-ClO4)(L)2(MeOH)2(H2O)Cl](ClO4) (Ln = Y(1·Y), Gd(2·Gd), Tb(3·Tb), Dy(4·Dy)和Ho(5·Ho)),並以X光單晶繞射確定其分子結構。從直流(dc)磁化率測量,顯示化合物2·Gd、3·Tb、4·Dy和5·Ho具有分子內鐵磁性(ferromagnetic)作用力。從交流(ac)磁化率測量,顯示3·Tb、4·Dy及5·Ho在零磁場下具有磁緩現象(slow magnetic relaxation)。化合物3·Tb、4·Dy及5·Ho的磁異向能(Ueff)分別為56.25 K、222.03 K及21.19 K。而4·Dy的磁異向能是目前銅-鑭系單分子磁鐵中最高的。
    章節二:我們合成出一系列的一維鏈狀(1D-chain) 化合物{[CuIILnIII(μ2−NO3)2(L)2(η2−NO3)]·xH2O·yEt2O}n (Ln = Y(6·Y), Dy(7·Dy), Ho(8·Ho), Er(9·Er)),並以X光單晶繞射確定其結構。分子間藉由硝酸根的氧(O11)沿著a軸橋接雙核單體形成一維鏈狀化合物。從直流(dc)磁化率測量,顯示化合物7·Dy具有鐵磁性(ferromagnetic)作用力。交流(ac)磁化率的測量中,化合物8·Ho在零磁場下觀測到磁緩現象,其磁異向能(Ueff)為3.33 K;化合物7·Dy則在外加1000 Oe磁場下,觀測到磁緩現象,其磁異向能為15.40 K。
    章節三:使用Gd(OAc)3或Tb(OAc)3與HL和CuCl2合成四核[CuII3LnIII(μ3-OH)(μ2-Cl)2(L)3(MeOH)Cl3]∙H2O (Ln = Gd(10·Gd), Tb(11·Tb))化合物;在相同反應條件下,Dy(OAc)3或Er(OAc)3則得到六核[CuII4LnIII2(μ3-OH)2(μ2-Cl)2(μ2-OAc)2(L)4(MeOH)2Cl4]∙wH2O·xEt2O·yMeOH·zMeCN (Ln = Dy(12·Dy), Er(13·Er))化合物,並以X光單晶繞射確定兩者結構。從直流(dc)磁化率測量,顯示化合物10·Gd具有分子內同時存在鐵磁性和反鐵磁性的作用力。在交流磁化率的量測中,11·Tb及12·Dy在零外加磁場環境中可觀測到磁緩現象,其磁異向能(Ueff)分別為2.28 K和40.19 K。

    This work contains three chapters. First, a series of heterometallic complexes ([CuIILnIII(μ2-ClO4)(L)2(MeOH)2(H2O)Cl](ClO4) (Ln = Y(1·Y), Gd(2·Gd), Tb(3·Tb), Dy(4·Dy) and Ho(5·Ho)) were synthesized by using HL, Ln(ClO4)3 and CuCl2. The molecular structures of complexes 1·Y–5·Ho were confirmed by single crystal X-ray crystallography. The dc magnetic susceptibility measurements show the presence of ferromagnetic interactions in complexes 2·Gd–5·Ho. For the ac magnetic susceptibility measurements, complexes 3·Tb, 4·Dy, and 5·Ho were found to exhibit single-molecule-magnet (SMM) behaviors with energy barrier values (Ueff) of 56.25, 222.03, and 21.19 K, respectively, under zero applied field. The complex 4·Dy shows the highest anisotropy barrier (222.03 K) in Cu/Ln-based single molecule magnets.
    For the second part, the reaction of HL with Cu(NO3)2 and Ln(NO3)3 were found to give a series of one-dimensional heterometallic complexes {[CuIILnIII(μ2−NO3)2(L)2(η2−NO3)]·xH2O·yEt2O}n (Ln = Y(6·Y), Dy(7·Dy), Ho(8·Ho), Er(9·Er)). The molecular structures of complexes 6·Y–9·Er were confirmed by single crystal X-ray crystallography. The coordination polymeric systems appear due to the bridging coordination of the nitrate ions, which connect successive [Cu1Ln1] units along a-axis. The dc magnetic susceptibility measurements of 6·Y–9·Er show the presence of ferromagnetic interactions in complex 7·Dy. For the ac magnetic susceptibility measurements, complexes 7·Dy and 8·Ho were found to exhibit SMM behaviors with energy barrier values of 3.33 K (1000 Oe) and 15.40 K (0 Oe), respectively.
    For the last part, two types of Cu/Ln heterometallic complexes [CuII3LnIII(μ3-OH)(μ2-Cl)2(L)3(MeOH)Cl3]∙H2O (Ln = Gd(10·Gd), Tb(11·Tb)) and [CuII4LnIII2(μ3-OH)2(μ2-Cl)2(μ2-OAc)2(L)4(MeOH)2Cl4] ∙wH2O·xEt2O·yMeOH·zMeCN (Ln = Dy(12·Dy), Er(13·Er)) were synthesized under the same reaction conditions and structurally characterized. The dc magnetic susceptibility measurements of 10·Gd display the presence of multiple interactions in complex 10·Gd. For the ac magnetic susceptibility measurements, complexes 11·Tb, and 12·Dy were found to exhibit SMM behaviors with energy barrier (Ueff) of 2.28,and 40.19 K, respectively, under zero applied field.

    Contents 中文摘要 I Abstract III 誌謝 V Contents VI List of Tables IX List of Figures XV List of Schemes XXX Abbreviation 1 Introduction 2 Chapter 1 Syntheses, Structures and Magnetic Properties of dinuclear CuIILnIII complexes: [CuIILnIII(μ2–ClO4)(L)2(MeOH)2(H2O)Cl](ClO4) Ln = Y(1·Y), Gd(2·Gd), Tb(3·Tb), Dy(4·Dy), Ho(5·Ho) 11 I.1. Experimental Section 12 I.1.1. Synthesis 12 I.1.2. X-ray Crystallography 15 I.1.3. Physical measurements 17 I.2. Results and discussion 18 I.2.1. Synthesis and phase identification 18 I.2.2. Description of structure 21 I.2.3. Magnetic properties 33 Chapter 2 Syntheses, Structures and Magnetic Properties of 1-D chain compounds: {[CuIILnIII(μ2−NO3)2(L)2(η2−NO3)]·xH2O·yEt2O}n Ln = Y(6·Y), Dy(7·Dy), Ho(8·Ho), Er(9·Er) (x = 0.7, y = 0.3 for 6·Y, 7·Dy and 8·Ho; x = 0.75, y = 0.25 for 9·Er) 89 II.1. Experimental Section 90 II.1.1. Synthesis 90 II.1.2. X-ray Crystallography 93 II.1.3. Physical measurements 95 II.2. Results and discussion 96 II.2.1. Synthesis and phase identification 96 II.2. Description of structure 99 II.2.3. Magnetic properties 109 II.3. Conclusions 136 Chapter 3 Syntheses, Structures and Magnetic Properties of tetranuclear and hexanuclear complexes: [CuII3LnIII(μ3-OH)(μ2-Cl)2(L)3(MeOH)Cl3]∙H2O Ln = Gd(10·Gd), Tb(11·Tb) [CuII4LnIII2(μ3-OH)2(μ2-Cl)2(μ2-OAc)2(L)4 (MeOH)2Cl4]∙wH2O·xEt2O·yMeOH·zMeCN Ln = Dy(12·Dy), Er(13·Er) (w = 1.8, x = 0.7, y = 0, z = 0.5 for 12·Dy and w = 0.5, x = 1, y = 0.5, z = 0 for 13·Er) 137 III.1. Experimental Section 138 III.1.1. Synthesis 138 III.1.2. X-ray Crystallography 141 III.1.3. Physical measurements 143 III.2. Results and discussion 144 III.2.1. Synthesis and phase identification 144 III.2.2. Description of structure 151 III.2.3. Magnetic properties 174 III.3. Conclusions 211 References 212 Appendix 223

    1. Ardavan., A.; Blundell., S. J., Storing quantum information in chemically engineered nanoscale magnets†. Journal of Materials Chemistry. 2009, 19, 1754-1760.
    2. Mannini, M.; Pineider, F.; Sainctavit, P.; Danieli, C.; Otero, E.; Sciancalepore, C.; Talarico, A. M.; Arrio, M. A.; Cornia, A.; Gatteschi, D.; Sessoli, R., Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Materials. 2009, 8 (3), 194-197.
    3. Leuenberger., M. N.; Loss., D., Quantum computing in molecularmagnets. Nature. 2001, 410, 789-793.
    4. Stamp., P. C. E.; Gaita-Arin˜o., A., Spin-based quantum computers made by chemistry: hows and whys. Journal of Materials Chemistry. 2009, 19, 1718-1730.
    5. Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R., Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature. 2010, 468, 417-421.
    6. Urdampilleta, M.; Nguyen, N. V.; Cleuziou, J. P.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W., Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes. International Journal of Molecular Sciences. 2011, 12, 6656-6667.
    7. Tesi, L.; Lucaccini, E.; Cimatti, I.; Perfetti, M.; Mannini, M.; Atzori, M.; Morra, E.; Chiesa, M.; Caneschi, A.; Sorace, L.; Sessoli, R., Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits. Chemical Science. 2016, 7, 2074-2083.
    8. Long, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Larionova, J., Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coordination Chemistry Reviews. 2018, 363, 57-70.
    9. Rosado Piquer, L.; Sanudo, E. C., Heterometallic 3d-4f single-molecule magnets. Dalton transactions. 2015, 44, 8771-8780.
    10. Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A., A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angewandte Chemie. 2017, 56, 11445-11449.
    11. Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., High-Spin Molecules: [ MnI2Ol20( 2CR),6(H 20)J. Journal of the American Chemical Society. 1993, 115, 1804-1816.
    12. Feltham, H. L. C.; Brooker, S., Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coordination Chemistry Reviews. 2014, 276, 1-33.
    13. Glaser, T., Rational design of single-molecule magnets: a supramolecular approach. Chemical communications. 2011, 47 (1), 116-130.
    14. Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y., Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society. 2003, 125, 8694-8695.
    15. Rinehart, J. D.; Long, J. R., Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chemical Science. 2011, 2 (11), 2078-2085.
    16. Ding, Y. S.; Chilton, D. N. F.; Winpenny, P. D. R. E. P.; Zheng, P. D. Y. Z., On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angewandte Chemie International Edition. 2016, 55, 16071-16074.
    17. Liu, J.; Chen, Y. C.; Liu, J. L.; Vieru, V.; Ungur, L.; Jia, J. H.; Chibotaru, L. F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; Chen, X. M.; Tong, M. L., A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. Journal of the American Chemical Society. 2016, 138, 5441-5450.
    18. Meng, Y. S.; Xu, L.; Xiong, J.; Yuan, Q.; Liu, T.; Wang, B. W.; Gao, S., Low-Coordinate Single-Ion Magnets by Intercalation of Lanthanides into a Phenol Matrix. Angewandte Chemie. 2018, 57, 4673-4676.
    19. Pugh, D. T.; Chilton, D. N. F.; Layfield, P. D. R. A., A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. Angewandte Chemie International Edition. 2016, 55, 11082-11085.
    20. Harriman, K. L.; Brosmer, J. L.; Ungur, L.; Diaconescu, P. L.; Murugesu, M., Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy(III) Single-Molecule Magnets. Journal of the American Chemical Society. 2017, 139, 1420-1423.
    21. Xiong, J.; Ding, H. Y.; Meng, Y. S.; Gao, C.; Zhang, X. J.; Meng, Z. S.; Zhang, Y. Q.; Shi, W.; Wang, B. W.; Gao, S., Hydroxide-bridged five-coordinate Dy(III) single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chemical Science. 2017, 8, 1288-1294.
    22. Chen, Y. C.; Liu, D. J. L.; Lan, D. Y.; Zhong, Z. Q.; Mansikkamäki, A.; Ungur, D. L.; Li, Q. W.; Jia, D. J. H.; Chibotaru, P. D. L. F.; Han, P. D. J. B.; Wernsdorfer, r. D. W.; Chen, P. D. X. M.; Tong, P. D. M. L., Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet. Chemistry – A European Journal. 2017, 23, 5708-5715.
    23. Dong, H. M.; Li, H. Y.; Zhang, Y. Q.; Yang, E. C.; Zhao, X. J., Magnetic Relaxation Dynamics of a Centrosymmetric Dy2 Single-Molecule Magnet Triggered by Magnetic-Site Dilution and External Magnetic Field. Inorganic chemistry. 2017, 56, 5611-5622.
    24. Liu, K.; Shi, W.; Cheng, P., Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coordination Chemistry Reviews. 2015, 289, 74-122.
    25. S, O.; T, K.; N, M.; N, R.; A, P.; J, M., A tetranuclear 3d-4f single molecule magnet: [CuIILTbIII(hfac)2]2. Journal of the American Chemical Society. 2004, 126, 420-421.
    26. Towatari, M.; Nishi, K.; Fujinami, T.; Matsumoto, N.; Sunatsuki, Y.; Kojima, M.; Mochida, N.; Ishida, T.; Re, N.; Mrozinski, J., Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1). Inorganic chemistry. 2013, 52, 6160-6178.
    27. Abbas, G.; Lan, Y.; Mereacre, V.; Wernsdorfer, W.; Clerac, R.; Buth, G.; Sougrati, M. T.; Grandjean, F.; Long, G. J.; Anson, C. E.; Powell, A. K., Magnetic and 57Fe Mossbauer study of the single molecule magnet behavior of a Dy3Fe7 coordination cluster. Inorganic chemistry. 2009, 48, 9345-9355.
    28. Ojea, M. J. H.; Milway, D. V. A.; Velmurugan, D. G.; H.Thomas, D. L.; Coles, D. S. J.; Wilson, D. C.; Wernsdorfer, D. W.; Rajaraman, P. G.; Murrie, D. M., Enhancement of TbIII–CuII Single‐Molecule Magnet Performance through Structural Modification. Chemistry – A European Journal. 2016, 22, 12839 -12848.
    29. Liu, J. L.; Wu, J. Y.; Chen, Y. C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L., A heterometallic Fe(II)-Dy(III) single-molecule magnet with a record anisotropy barrier. Angewandte Chemie 2014, 53, 12966-12970.
    30. Liu, J. L.; Wu, J. Y.; Huang, G. Z.; Chen, Y. C.; Jia, J. H.; Ungur, L.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L., Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process. Scientific Reports 2015, 5, 16621-16630.
    31. Zhao, F. H.; Li, H.; Che, Y. X.; Zheng, J. M.; Vieru, V.; Chibotaru, L. F.; Grandjean, F.; Long, G. J., Synthesis, structure, and magnetic properties of Dy(2)Co(2)L(1)(0)(bipy)(2) and Ln(2)Ni(2)L(1)(0)(bipy)(2), Ln = La, Gd, Tb, Dy, and Ho: slow magnetic relaxation in Dy(2)Co(2)L(1)(0)(bipy)(2) and Dy(2)Ni(2)L(1)(0)(bipy)(2). Inorganic chemistry 2014, 53, 9785-9799.
    32. Mori, F.; Nyui, T.; Ishida, T.; Nogami, T.; Choi, K.-Y.; Nojiri, H., Oximate-Bridged Trinuclear Dy-Cu-Dy Complex Behaving as a Single-Molecule Magnet and Its Mechanistic Investigation. 2006, 128, 1440-1441.
    33. 曾琛(2017),「鐵(III)-鑭系配位團簇之合成, 結構及磁性研究」,國立成功大學化學所碩士論文
    34. 林羽珊(2017),「鈷-鑭系金屬簇之合成, 結構及磁性研究」,國立成功大學化學所碩士論文
    35. 陳瑋(2016),「鎳-鑭系金屬簇之合成、結構及磁性研究」,國立成功大學化學所碩士論文
    36. Paulovič, J.; Cimpoesu, F.; Ferbinteanu, M.; Hirao, K., Mechanism of Ferromagnetic Coupling in Copper(II)-Gadolinium(III) Complexes. Journal of the American Chemical Society. 2004, 126, 3321-3331.
    37. Maity, M.; Majee, M. C.; Kundu, S.; Samanta, S. K.; Sanudo, E. C.; Ghosh, S.; Chaudhury, M., Pentanuclear 3d-4f Heterometal Complexes of M(II)3Ln(III)2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) Combinations: Syntheses, Structures, Magnetism, and Photoluminescence Properties. Inorganic chemistry 2015, 54, 9715-9726.
    38. Veidis, M. V.; Schreiber, G. H.; Gough, T. E.; Palenik, G. J., Jahn-Teller distortions in octahedral copper(II) complexes. Journal of the American Chemical Society. 1969, 91, 1859-1860.
    39. Boca, R.; Rajnak, C.; Titis, J.; Valigura, D., Field Supported Slow Magnetic Relaxation in a Mononuclear Cu(II) Complex. Inorganic chemistry 2017, 56, 1478-1482.
    40. Dolai, M.; Ali, M.; Titis, J.; Boca, R., Cu(II)-Dy(III) and Co(III)-Dy(III) based single molecule magnets with multiple slow magnetic relaxation processes in the Cu(II)-Dy(III) complex. Dalton transactions 2015, 44, 13242-13249.
    41. Wang, K.; Chen, Z.-L.; Zou, H.-H.; Zhang, Z.; Sun, W.-Y.; Liang, F.-P., Two Types of Cu-Ln Heterometallic Coordination Polymers with 2-Hydroxyisophthalate: Syntheses, Structures, and Magnetic Properties. Crystal Growth & Design 2015, 15, 2883-2890.
    42. Mahapatra, P.; Ghosh, S.; Koizumi, N.; Kanetomo, T.; Ishida, T.; Drew, M. G. B.; Ghosh, A., Structural variations in (CuL)2Ln complexes of a series of lanthanide ions with a salen-type unsymmetrical Schiff base(H2L): Dy and Tb derivatives as potential single-molecule magnets. Dalton transactions 2017, 46, 12095-12105.
    43. Zhang, P.; Zhang, L.; Lin, S. Y.; Tang, J., Tetranuclear [MDy]2 compounds and their dinuclear [MDy] (M = Zn/Cu) building units: their assembly, structures, and magnetic properties. Inorganic chemistry 2013, 52, 6595-602.
    44. Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita, M., Structural design of easy-axis magnetic anisotropy and determination of anisotropic parameters of Ln(III)-Cu(II) single-molecule magnets. Chemistry 2011, 17, 196-205.
    45. Liu, Y.-A.; Wang, C.-Y.; Zhang, M.; Song, X.-Q., Structures and magnetic properties of cyclic heterometallic tetranuclear clusters. Polyhedron 2017, 127, 278-286.
    46. Ueno, T.; Fujinami, T.; Matsumoto, N.; Furusawa, M.; Irie, R.; Re, N.; Kanetomo, T.; Ishida, T.; Sunatsuki, Y., Circular and Chainlike Copper(II)-Lanthanide(III) Complexes Generated by Assembly Reactions of Racemic and Chiral Copper(II) Cross-Linking Ligand Complexes with LnIII(NO3)3.6H2O (LnIII = GdIII, TbIII, DyIII). Inorganic chemistry 2017, 56, 1679-1695.
    47. EVINEA, B. R.; Sxmr, J. K., The Synthesis of New p-Diketones. DEPARTMENT OF CHEMISTRY. ROCHESTER, NEW YORK. UNIVERSITY OF ROCHESTER. RECEIVED 1951, 73, 4478-4478.
    48. Sheldrick, G. M., SHELXT - integrated space-group and crystal-structure determination. Acta crystallographica. Section A, Foundations and advances 2015, 71, 3-8.
    49. Bain, G. A.; Berry, J. F., Diamagnetic Corrections and Pascal’s Constants. Journal of Chemical Education 2008, 85, 532-536.
    50. Llunell, M.; Casanova, D.; Jordi Cirera; Alemany, P.; Alvarez, S., SHAPE v2.1. Departament de Química Física, Departament de Química Inorgànica, and Institut de Química Teòrica i Computacional - Universitat de Barcelona 2013, 2.1, 1-35.
    51. Kwan, E. E., An Introduction to Hydrogen Bonding. Evans Group Seminar 2009, 1-31.
    52. Costes, J.-P.; Dahan, F.; Dupuis, A., Influence of Anionic Ligands (X) on the Nature and Magnetic Properties of Dinuclear LCuGdX3·H2O Complexes (LH2 Standing for Tetradentate Schiff Base Ligands Deriving from 2-Hydroxy-3-methoxybenzaldehyde and X Being Cl, N3C2, and CF3COO). Inorganic chemistry 2000, 39 (2), 165-168.
    53. Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P., A Genuine Example of a Discrete Bimetallic (Cu, Gd) Complex: Structural Determination and Magnetic Properties. Inorganic chemistry 1996, 35, 2400-2402.
    54. He, F.; Tong, M.-L.; Chen, X.-M., Synthesis, Structures, and Magnetic Properties of Heteronuclear Cu(II)-Ln(III) (Ln ) La, Gd, or Tb) Complexes. Inorganic chemistry 2005, 44, 8285-8292.
    55. Chiboub Fellah, F. Z.; Boulefred, S.; Chiboub Fellah, A.; El Rez, B.; Duhayon, C.; Sutter, J.-P., Binuclear CuLn complexes (LnIII=Gd, Tb, Dy) of alcohol-functionalized bicompartmental Schiff-base ligand. Hydrogen bonding and magnetic behaviors. Inorganica Chimica Acta 2016, 439, 24-29.
    56. Costes, J.-P.; Dahan, F.; Dupuis, A.; Laurent, J.-P., A General Route to Strictly Dinuclear Cu(II)/Ln(III) Complexes. Structural Determination and Magnetic Behavior of Two Cu(II)/Gd(III) Complexes. Inorganic chemistry 1997, 36, 3429-3422.
    57. Chaudhari, A. K.; Joarder, B.; Riviere, E.; Rogez, G.; Ghosh, S. K., Nitrate-bridged "pseudo-double-propeller"-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties. Inorganic chemistry 2012, 51 (17), 9159-9161.
    58. Costes, J.-P.; Dahan, F. o.; Dupuis, A.; Laurent, J.-P., Structural studies of a dinuclear (Cu, Gd) and two trinuclear (Cu2, Ln) complexes (Ln= Ce, Er). Magnetic properties of two original (Cu, Gd) complexes. New Journal of Chemistry 1998, 22, 1525-1529.
    59. Wang, H.-S.; Yang, F.-J.; Long, Q.-Q.; Huang, Z.-Y.; Chen, W.; Pan, Z.-Q., Syntheses, crystal structures, and magnetic properties of a family of heterometallic octanuclear [Cu6Ln2] (Ln = Dy(iii), Tb(iii), Ho(iii), Er(iii), and Gd(iii)) complexes. New J. Chem. 2017, 41 (13), 5884-5892.
    60. Hamamatsu, T.; Yabe, K.; Towatari, M.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J., Synthesis and Magnetic Property of Copper(II)–Lanthanide(III) Complexes [{CuIILLnIII(o-van)(CH3COO)(MeOH)}2]·2H2O (LnIII= GdIII, TbIII, and DyIII; H3L = 1-(2-Hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane;o-van = 3-Methoxysalicylaldehydato). Bulletin of the Chemical Society of Japan 2007, 80 (3), 523-529.
    61. Huang, X. C.; Zhao, X. H.; Shao, D.; Wang, X. Y., Syntheses, structures, and magnetic properties of a family of end-on azido-bridged CuII-LnIII complexes. Dalton transactions 2017, 46 (22), 7232-7241.
    62. Shimada, T.; Okazawa, A.; Kojima, N.; Yoshii, S.; Nojiri, H.; Ishida, T., Ferromagnetic exchange couplings showing a chemical trend in Cu-Ln-Cu complexes (Ln = Gd, Tb, Dy, Ho, Er). Inorganic chemistry 2011, 50 (21), 10555-10557.
    63. Jiang, L.; Liu, B.; Zhao, H.-W.; Tian, J.-L.; Liu, X.; Yan, S.-P., Compartmental ligand approach for constructing 3d–4f heterometallic [CuII5LnIII2] clusters: synthesis and magnetostructural properties. CrystEngComm 2017, 19, 1816-1830.
    64. Ramade, I.; Kahn, O.; Jeannin, Y.; Robert, F., Design and Magnetic Properties of a Magnetically Isolated GdIIICuII Pair. Crystal Structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen)(Meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa ) Hexafluoroacetylacetonato, salen ) N,N¢-Ethylenebis(salicylideneaminato), Meim ) 1-Methylimidazole]. Inorganic chemistry 1997, 36, 930-936.
    65. Sopasis, G. J.; Canaj, A. B.; Philippidis, A.; Siczek, M.; Lis, T.; O'Brien, J. R.; Antonakis, M. M.; Pergantis, S. A.; Milios, C. J., Heptanuclear heterometallic [Cu6Ln] clusters: trapping lanthanides into copper cages with artificial amino acids. Inorganic chemistry 2012, 51 (10), 5911-5918.
    66. Sasaki, M.; Manseki, K.; Horiuchi, H.; Kumagai, M.; Sakamoto, M.; Sakiyama, H.; Nishida, Y.; Sakai, M.; Sadaoka, Y.; Ohbad, M.; O-kawad, H., Synthesis, structure, and magnetic properties of discrete d–f heterodinuclear complexes designed from tetrahedrally distorted [Cu(salabza)] (H2salabza N,N-bis(salicylidene)-2-aminobenzylamine) and [Ln(hfac)3] (Hhfac 1,1,1,5,5,5-hexafluoroacetylacetone, Ln Gd or Lu). Journal of the Chemical Society, Dalton Transactions 1999, (3), 259-263.
    67. Aronica, C.; Chastanet, G.; Pilet, G.; Guennic, B. L.; Robert, V.; Wernsdorfer, W.; Luneau, D., Cubane Variations: Syntheses, Structures, and Magnetic Property Analyses of Lanthanide(III)-Copper(II) Architectures with Controlled Nuclearities|. Inorganic chemistry 2007, 46, 6108-6119.
    68. Biswas, S.; Bag, P.; Das, S.; Kundu, S.; van Leusen, J.; Kögerler, P.; Chandrasekhar, V., Heterometallic [Cu2Ln3] (Ln = DyIII, GdIIIand HoIII) and [Cu4Ln2] (Ln = DyIIIand HoIII) Compounds: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry 2017, 2017, 1129-1142.
    69. Yoshida, T.; Cosquer, G.; Izuogu, D. C.; Ohtsu, H.; Kawano, M.; Lan, Y.; Wernsdorfer, W.; Nojiri, H.; Breedlove, B. K.; Yamashita, M., Field-Induced Slow Magnetic Relaxation of Gd(III) Complex with a Pt-Gd Heterometallic Bond. Chemistry 2017, 23, 4551-4556.
    70. Velkos, G.; Krylov, D. S.; Kirkpatrick, K.; Liu, X.; Spree, L.; Wolter, A. U. B.; Buchner, B.; Dorn, H. C.; Popov, A. A., Giant exchange coupling and field-induced slow relaxation of magnetization in Gd2@C79N with a single-electron Gd-Gd bond. Chemical communications 2018, 54, 2902-2905.
    71. Arauzo, A.; Lazarescu, A.; Shova, S.; Bartolome, E.; Cases, R.; Luzon, J.; Bartolome, J.; Turta, C., Structural and magnetic properties of some lanthanide (Ln = Eu(iii), Gd(iii) and Nd(iii)) cyanoacetate polymers: field-induced slow magnetic relaxation in the Gd and Nd substitutions. Dalton transactions 2014, 43, 12342-12356.
    72. Horii, Y.; Katoh, K.; Cosquer, G.; Breedlove, B. K.; Yamashita, M., Weak Dy(III)-Dy(III) Interactions in Dy(III)-Phthalocyaninato Multiple-Decker Single-Molecule Magnets Effectively Suppress Magnetic Relaxation. Inorganic chemistry 2016, 55, 11782-11790.
    73. Katoh, K.; Horii, Y.; Yasuda, N.; Wernsdorfer, W.; Toriumi, K.; Breedlove, B. K.; Yamashita, M., Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes. Dalton transactions 2012, 41, 13582-13600.
    74. Liddle, S. T.; van Slageren, J., Improving f-element single molecule magnets. Chemical Society reviews 2015, 44, 6655-6669.
    75. Guo, M.; Wang, Y.; Wu, J.; Zhao, L.; Tang, J., Structures and magnetic properties of dysprosium complexes: the effect of crystallization temperature. Dalton transactions 2017, 46, 564-570.
    76. Zhang, J. W.; Kan, X. M.; Liu, B. Q.; Liu, G. C.; Tian, A. X.; Wang, X. L., Systematic Investigation of Reaction-Time Dependence of Three Series of Copper-Lanthanide/Lanthanide Coordination Polymers: Syntheses, Structures, Photoluminescence, and Magnetism. Chemistry 2015, 21, 16219-16228.
    77. Sun, H.-L.; Wang, Z.-M.; Gao, S., Strategies towards single-chain magnets. Coordination Chemistry Reviews 2010, 254, 1081-1100.
    78. 陳裕仁(2018),「鎳-鑭系異核金屬團簇之合成、結構及磁性研究」,國立成功大學化學所碩士論文
    79. Zhou, G. J.; Han, T.; Ding, Y. S.; Chilton, N. F.; Zheng, Y. Z., Metallacrowns as Templates for Diabolo-like {LnCu8 } Complexes with Nearly Perfect Square Antiprismatic Geometry. Chemistry 2017, 23, 15617-15622.
    80. Habib, F.; Long, J.; Lin, P.-H.; Korobkov, I.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Murugesu, M., Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chemical Science 2012, 3, 2158-2164.
    81. Mazarakioti, E. C.; Regier, J.; Cunha-Silva, L.; Wernsdorfer, W.; Pilkington, M.; Tang, J.; Stamatatos, T. C., Large Energy Barrier and Magnetization Hysteresis at 5 K for a Symmetric {Dy2} Complex with Spherical Tricapped Trigonal Prismatic Dy(III) Ions. Inorganic chemistry 2017, 56, 3568-3578.
    82. Long, J.; Habib, F.; Lin, P. H.; Korobkov, I.; Enright, G.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Murugesu, M., Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. Journal of the American Chemical Society. 2011, 133, 5319-53128.
    83. Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R., A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. Journal of the American Chemical Society. 2011, 133, 14236-14239.
    84. Xue, S.; Guo, Y. N.; Ungur, L.; Tang, J.; Chibotaru, L. F., Tuning the Magnetic Interactions and Relaxation Dynamics of Dy2 Single-Molecule Magnets. Chemistry 2015, 21, 14099-14106.
    85. Chilton, N. F.; Collison, D.; McInnes, E. J.; Winpenny, R. E.; Soncini, A., An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nature Communications 2013, 4, 2551-2558.
    86. Zhang, L.; Jung, J.; Zhang, P.; Guo, M.; Zhao, L.; Tang, J.; Le Guennic, B., Site-Resolved Two-Step Relaxation Process in an Asymmetric Dy2 Single-Molecule Magnet. Chemistry 2016, 22, 1392-1398.
    87. Guo, Y. N.; Ungur, L.; Granroth, G. E.; Powell, A. K.; Wu, C.; Nagler, S. E.; Tang, J.; Chibotaru, L. F.; Cui, D., An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Scientific Reports 2014, 4, 5471-5478.
    88. Gupta, S. K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R., An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature. Chemical Science 2016, 7, 5181-5191.
    89. Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L., Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Journal of the American Chemical Society. 2016, 138, 2829-2837.
    90. Gupta, S. K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R., Is a strong axial crystal-field the only essential condition for a large magnetic anisotropy barrier? The case of non-Kramers Ho(iii) versus Tb(iii ). Dalton transactions 2018, 47, 357-366.
    91. Dey, A.; Das, S.; Kundu, S.; Mondal, A.; Rouzieres, M.; Mathoniere, C.; Clerac, R.; Suriya Narayanan, R.; Chandrasekhar, V., Heterometallic Heptanuclear [Cu5Ln2] (Ln = Tb, Dy, and Ho) Single-Molecule Magnets Organized in One-Dimensional Coordination Polymeric Network. Inorganic chemistry 2017, 56 (23), 14612-14623.
    92. Goura, J.; Guillaume, R.; Riviere, E.; Chandrasekhar, V., Hexanuclear, heterometallic, Ni(3)Ln(3) complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue. Inorganic chemistry 2014, 53, 7815-7823.
    93. Benelli, C.; Gatteschi, D., Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals. Chemical Reviews 2002, 102, 2369-2387.
    94. Feltham, H. L.; Clerac, R.; Ungur, L.; Vieru, V.; Chibotaru, L. F.; Powell, A. K.; Brooker, S., Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior. Inorganic chemistry 2012, 51, 10603-10612.
    95. Bartolomé, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C., Magnetostructural correlations in the tetranuclear series of{Fe3LnO2}butterfly core clusters: Magnetic and Mössbauer spectroscopic study. Physical Review B 2009, 80, 1-16.
    96. Cho, K. J.; Ryu, D. W.; Lim, K. S.; Lee, W. R.; Lee, J. W.; Koh, E. K.; Hong, C. S., Syntheses, structures, and magnetic properties of cyano- and phenoxide-bridged Fe(III)-Mn(III) tetrameric assemblies formed by blocked fac-Fe tricyanide with aliphatic rings. Dalton transactions 2013, 42, 5796-5804.
    97. F. Luis, J.; Bartolomé, J. F.; Fernández, J.; Tejada, J. M.; Hernández, X.; X. Zhang; Ziolo, R., Thermally activated and field-tuned tunneling in Mn12Ac studied by ac magnetic susceptibility. Phys. Rev. B 1997, 55, 11448-11457.
    98. Mukherjee, S.; Lu, J.; Velmurugan, G.; Singh, S.; Rajaraman, G.; Tang, J.; Ghosh, S. K., Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln2 (Ln = Dy and Gd) Complexes. Inorganic chemistry 2016, 55, 11283-11298.
    99. Iasco, O.; Novitchi, G.; Jeanneau, E.; Wernsdorfer, W.; Luneau, D., Benzoxazole-based heterometallic dodecanuclear complex [Dy(III)4Cu(II)8] with single-molecule-magnet behavior. Inorganic chemistry 2011, 50 (16), 7373-7375.
    100. Chilton, N. F., CC-FIT. School of Chemistry, The University of Manchester 2014.
    101. Guo, Y. N.; Xu, G. F.; Guo, Y.; Tang, J., Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton transactions 2011, 40, 9953-9963.

    無法下載圖示 校內:2023-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE