| 研究生: |
蕭宇良 Hsiao, Yu-Liang |
|---|---|
| 論文名稱: |
整合ZnO 奈米結構與 PVDF-TrFE 聚合物壓電電子與壓電-黏彈性機制於先進能量轉換與觸覺感測技術 Synergistic Piezotronic and Piezo‑Visco Mechanisms by combining ZnO Nanostructures and PVDF-TrFE Polymer for Advanced Energy Conversion and Tactile Sensing |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 壓電電子效應 、壓電黏彈機制 、氧化鋅奈米結構 、PVDF-TrFE 複合材料 、能量轉換 、觸覺感測 |
| 外文關鍵詞: | Piezotronic effect, Piezo-visco mechanism, ZnO nanostructures, PVDF-TrFE composites, Energy conversion, Tactile sensing |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電效應與半導體特性融合的壓電電子效應(Piezotronics)及壓電黏彈機制(Piezo-Visco)近年來逐漸成為材料科學領域的重要研究方向。本研究探討半導體奈米結構與聚合物複合材料中的壓電電子與壓電黏彈機制,旨在提升其在能量轉換與觸覺感測方面的效能。
首先,本研究利用錫摻雜氧化鋅(Sb-ZnO)奈米柱陣列作為光電化學水分解系統的光陽極,透過壓電催化與摻雜效應的協同作用,成功將光電流密度提升154%。進一步實驗證實,施加的應變可調控界面肖特基能障高度,進而提高載子分離與傳輸效率,有效增強氧氣產率。此外,研究亦證明Sb摻雜可顯著放大壓電電位,提升材料壓電效能。
其次,研究提出一種超低功耗、廣泛工作電壓窗口的電容式壓電電子觸覺感測元件。此元件通過直接量測壓電電荷誘導的電容變化,無需啟動蕭特基二極體,即可實現接近零電壓操作,顯著降低功耗並提高元件穩定性。此外,該感測器展現出極佳的抗摩擦電干擾能力,特別適用於機器人、義肢及穿戴式電子產品的觸覺感測應用。
最後,研究針對PVDF-TrFE複合材料的壓電輸出進行了深入的黏彈性研究,發現透過調整外力頻率可有效誘導非對稱壓電響應,提升能量轉換效率,並特別適用於自充電鋰離子電池等先進能量儲存裝置。通過材料分析與機械特性量測,本研究闡明了黏彈效應與頻率依賴的應力變化對非對稱輸出訊號產生的影響。整體而言,本研究在壓電材料的機制理解、結構設計與應用性能提升方面提供了重要的學術貢獻與實踐價值,並提出未來進一步的研究方向。
Integrating piezotronic and piezo-visco mechanisms in semiconductor nanostructures and polymer composites has emerged as a crucial frontier in materials science, significantly advancing energy conversion and tactile sensing applications. This dissertation systematically explores these synergistic mechanisms to enhance their efficiency and applicability.
Firstly, this research employs antimony-doped zinc oxide (Sb-ZnO) nanorod arrays as photoanodes for photoelectrochemical (PEC) water splitting—the synergistic effect between piezocatalysis and doping results in a remarkable 154% increase in photocurrent density. The application of external strain modulates the Schottky barrier height at interfaces, significantly improving charge carrier separation and transport efficiency, thereby enhancing oxygen evolution efficiency. Moreover, Sb doping amplifies piezoelectric potential, highlighting its pivotal role in augmenting piezoelectric performance.
Secondly, an ultra-low-power capacitive piezotronic tactile sensor with a wide-operating-voltage window was developed. By directly measuring capacitance changes induced by piezocharges, the sensor eliminates the necessity of activating the Schottky diode, enabling near-zero bias operation and significantly reducing power consumption. This innovative design demonstrates excellent resistance to triboelectric interference, making it highly suitable for tactile sensing in robotics, prosthetics, and wearable devices.
Finally, this study examines the viscoelastic properties of PVDF-TrFE composites, revealing that frequency-dependent mechanical stimuli can induce pronounced asymmetrical piezoelectric outputs, significantly enhancing the energy harvesting efficiency, especially beneficial in self-charging lithium-ion battery applications. Comprehensive materials characterization and mechanical testing elucidate the impact of viscoelastic effects and stress frequency variations on the asymmetric output signal.
In conclusion, this research provides significant academic contributions and practical value in understanding piezoelectric mechanisms, structural design, and application performance improvements. Potential future research directions are also proposed.
[1] Hosseini, S. E.;Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable & Sustainable Energy Reviews 57, 850-866, 2016.
[2] Auner, N. Silicon as an intermediary between renewable energy and hydrogen. N. E-conomics Research Notes 11, 1610-1480, 2004.
[3] Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F.; Hone, J.;Wang, Z. L. Piezoelectricity of single-atomic-layer MoS<sub>2</sub> for energy conversion and piezotronics. Nature 514 (7523), 470-474, 2014.
[4] Zhu, M.; Yi, Z.; Yang, B.;Lee, C. Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016, 2021.
[5] Shepelin, N. A.; Glushenkov, A. M.; Lussini, V. C.; Fox, P. J.; Dicinoski, G. W.; Shapter, J. G.;Ellis, A. V. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy & Environmental Science 12 (4), 1143-1176, 2019.
[6] Fan, F. R.; Tang, W.;Wang, Z. L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Advanced Materials 28 (22), 4283-4305, 2016.
[7] Turdakyn, N.; Bekezhankyzy, Z.; Araby, S.; Montazami, R.; Bakenov, Z.;Kalimuldina, G. Investigation of electrospun piezoelectric P(VDF-TrFE) nanofiber-based nanogenerators for energy harvesting. Energy Reports 10, 628-636, 2023.
[8] Liu, Y. C.; Chang, Y. F.; Sun, E. W.; Li, F.; Zhang, S. T.; Yang, B.; Sun, Y.; Wu, J.;Cao, W. W. Significantly Enhanced Energy-Harvesting Performance and Superior Fatigue-Resistant Behavior in 001 (c)-Textured BaTiO3-Based Lead-Free Piezoceramics. Acs Applied Materials & Interfaces 10 (37), 31488-31497, 2018.
[9] Mishra, S.; Unnikrishnan, L.; Kumar Nayak, S.;Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromolecular Materials and Engineering 304, 1800463, 2019.
[10] Chen, X. H.; Tee, K.; Elnahass, M.;Ahmed, R. Assessing the environmental impacts of renewable energy sources: A case study on air pollution and carbon emissions in China. Journal of Environmental Management 345, 118525, 2023.
[11] Olujobi, O. J.; Okorie, U. E.; Olarinde, E. S.;Aina-Pelemo, A. D. Legal responses to energy security and sustainability in Nigeria's power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon 9 (7), e17912, 2023.
[12] Singh, V.; Sharma, S.;Bhatt, K. A review on energy harvesting technologies: Comparison between non-conventional and conceptual approaches. Energy Reports 12, 4717-4740, 2024.
[13] Bagheri, M. H.; Khan, A. A.; Shahzadi, S.; Rana, M. M.; Hasan, M. S.;Ban, D. Advancements and challenges in molecular/hybrid perovskites for piezoelectric nanogenerator application: A comprehensive review. Nano Energy 120, 109101, 2024.
[14] Wehbi, Z.; Taher, R.; Faraj, J.; Castelain, C.;Khaled, M. Hybrid thermoelectric generators-renewable energy systems: A short review on recent developments. Energy Reports 8, 1361-1370, 2022.
[15] Grubel, K.; Jeong, H.; Yoon, C. W.;Autrey, T. Challenges and opportunities for using formate to store, transport, and use hydrogen. Journal of Energy Chemistry 41, 216-224, 2020.
[16] M.Saleh, H.;I.Hassan, A. The challenges of sustainable energy transition: A focus on renewable energy. Applied Chemical Engineering 7, 2084, 2024.
[17] Guerrero-Rodríguez, N. F.; De La Rosa-Leonardo, D. A.; Tapia-Marte, R.; Ramírez-Rivera, F. A.; Faxas-Guzmán, J.; Rey-Boué, A. B.;Reyes-Archundia, E. An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production. Sustainability 16 (13), 5569, 2024.
[18] Orikpete, O.; Ikemba, S.;Ewim, D. Integration of Renewable Energy Technologies in Smart Building Design for Enhanced Energy Efficiency and Self-Sufficiency. The Journal of Engineering and Exact Sciences 9, 1-13, 2023.
[19] Mahmood, M.; Chowdhury, P.; Yeassin, R.; Hasan, M.; Ahmad, T.;Chowdhury, N.-U.-R. Impacts of digitalization on smart grids, renewable energy, and demand response: An updated review of current applications. Energy Conversion and Management: X 24, 100790, 2024.
[20] Zheng, H. W.; Zi, Y. L.; He, X.; Guo, H. Y.; Lai, Y. C.; Wang, J.; Zhang, S. L.; Wu, C. S.; Cheng, G.;Wang, Z. L. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. Acs Applied Materials & Interfaces 10 (17), 14708-14715, 2018.
[21] Wang, Z.; Tan, L.; Pan, X. M.; Liu, G.; He, Y. H.; Jin, W. C.; Li, M.; Hu, Y. M.;Gu, H. S. Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets. Acs Applied Materials & Interfaces 9 (34), 28586-28595, 2017.
[22] Kar, E.; Bose, N.; Dutta, B.; Mukherjee, N.;Mukherjee, S. Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing. Acs Applied Materials & Interfaces 11 (19), 17501-17512, 2019.
[23] Han, W. X.; He, H. X.; Zhang, L. L.; Dong, C. Y.; Zeng, H.; Dai, Y. T.; Xing, L. L.; Zhang, Y.;Xue, X. Y. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays. Acs Applied Materials & Interfaces 9 (35), 29526-29537, 2017.
[24] Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.;Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials 11 (9), 795-801, 2012.
[25] Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.;Wang, Z. L. Flexible piezotronic strain sensor. Nano Letters 8 (9), 3035-3040, 2008.
[26] Huo, Z. H.; Wang, X. D.; Zhang, Y. F.; Wan, B. S.; Wu, W. Q.; Xi, J. G.; Yang, Z.; Hu, G. F.; Li, X. Y.;Pan, C. F. High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy 73, 2020.
[27] Wang, L.; Liu, S.; Wang, Z.; Zhou, Y.; Qin, Y.;Wang, Z. L. Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO(2) Nanoplatelets via Thermal Stress. ACS Nano 10 (2), 2636-43, 2016.
[28] Sezer, N.;Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567, 2021.
[29] Mishra, S.; Unnikrishnan, L.; Nayak, S. K.;Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromolecular Materials and Engineering 304 (1), 2019.
[30] Sun, Y.; Zheng, Y. D.; Wang, R.; Fan, J.;Liu, Y. Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chemical Engineering Journal 426, 131262, 2021.
[31] Wang, Z. L. Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al. Advanced Materials 21 (13), 1311-1315, 2009.
[32] Lee, G. J.; Lee, M. K.; Park, J. J.; Hyeon, D. Y.; Jeong, C. K.;Park, K. I. Piezoelectric Energy Harvesting from Two-Dimensional Boron Nitride Nanoflakes. Acs Applied Materials & Interfaces 11 (41), 37920-37926, 2019.
[33] Xu, Q.; Dai, Y.; Peng, Y.; Hong, L.; Yang, N.;Wang, Z. Recent Development of Multifunctional Sensors Based on Low-Dimensional Materials. Sensors 21 (22), 7727, 2021.
[34] Pang, F.; Zhao, P.; Lee, H.; Kim, D. J.; Meng, X.; Cho, Y.;Kim, S.-W. Progress and Perspectives in 2D Piezoelectric Materials for Piezotronics and Piezo‐Phototronics. Advanced Science, 2025.
[35] Han, Z.; Jiao, P.;Zhu, Z. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines 12 (7), 813, 2021.
[36] Yu, Q. H.; Ge, R.; Wen, J.; Du, T.; Zhai, J. Y.; Liu, S. H.; Wang, L. F.;Qin, Y. Highly sensitive strain sensors based on piezotronic tunneling junction. Nature Communications 13 (1), 778, 2022.
[37] Wang, C. H.; Lai, K. Y.; Li, Y. C.; Chen, Y. C.;Liu, C. P. Ultrasensitive Thin-Film-Based AlxGa1-xN Piezotronic Strain Sensors via Alloying-Enhanced Piezoelectric Potential. Advanced Materials 27 (40), 6289-6295, 2015.
[38] Cao, X.; Cao, X.; Guo, H.; Li, T.; Jie, Y.; Wang, N.;Wang, Z. L. Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor. ACS Nano 10 (8), 8038-44, 2016.
[39] Liao, X. Q.; Yan, X. Q.; Lin, P.; Lu, S. G.; Tian, Y.;Zhang, Y. Enhanced Performance of ZnO Piezotronic Pressure Sensor through Electron-Tunneling Modulation of MgO Nano layer. ACS Appl. Mater. Interfaces 7 (3), 1602-1607, 2015.
[40] Wang, L.;Wang, Z. Advances in piezotronic transistors and piezotronics. Nano Today 37, 101108, 2021.
[41] Covaci, C.;Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 20 (12), 3512, 2020.
[42] Shinde, P.;Patil, S. Towards Sustainable Energy Solutions: A Comprehensive Analysis of Piezoelectric Sensors for Power Generation. International Journal of Advanced Research in Science, Communication and Technology, 151-161, 2024.
[43] Lin, P.; Yan, X. Q.; Zhang, Z.; Shen, Y. W.; Zhao, Y. G.; Bai, Z. M.;Zhang, Y. Self-Powered UV Photosensor Based on PEDOT:PSS/ZnO Micro/Nanowire with Strain-Modulated Photoresponse. Acs Applied Materials & Interfaces 5 (9), 3671-3676, 2013.
[44] Gupta, M. K.; Kim, S. W.;Kumar, B. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester. Acs Applied Materials & Interfaces 8 (3), 1766-1773, 2016.
[45] Wang, Z. L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today 20 (2), 74-82, 2017.
[46] Fang, X.-Q.; Liu, J.-x.;Gupta, V. Fundamental formulations and recent achievements in piezoelectric nano-structures: A review. Nanoscale 5, 1716-1726, 2013.
[47] Ghahramanifard, F.; Rouhollahi, A.;Fazlolahzadeh, O. Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlattices and Microstructures 114, 1-14, 2018.
[48] Broitman, E.; Soomro, M. Y.; Lu, J.; Willander, M.;Hultman, L. Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique. Physical Chemistry Chemical Physics 15 (26), 11113-11118, 2013.
[49] Zhang, Z.; Liao, Q. L.; Zhang, X. H.; Zhang, G. J.; Li, P. F.; Lu, S. N.; Liu, S.;Zhang, Y. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale 7 (5), 1796-1801, 2015.
[50] Ong, W. L.; Huang, H. J.; Xiao, J. X.; Zeng, K. Y.;Ho, G. W. Tuning of multifunctional Cu-doped ZnO films and nanowires for enhanced piezo/ferroelectric-like and gas/photoresponse properties. Nanoscale 6 (3), 1680-1690, 2014.
[51] Ping-Che Lee, Y.-L. H., Jit Dutta, Ruey-Chi Wang, Shih-Wen Tseng, Chuan-Pu Liu. Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy 82, 105702, 2021.
[52] Consonni, V.;Lord, A. M. Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices. Nano Energy 83, 105789, 2021.
[53] Schmidt-Mende, L.;MacManus-Driscoll, J. L. ZnO - nanostructures, defects, and devices. Materials Today 10 (5), 40-48, 2007.
[54] Su, Y. L.; Gupta, K.; Hsiao, Y. L.; Wang, R. C.;Liu, C. P. Gigantic enhancement of electricity generation in piezoelectric semiconductors by creating pores as a universal approach. Energy & Environmental Science 12 (1), 410-417, 2019.
[55] Wang, Z. L.;Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312 (5771), 242-246, 2006.
[56] Lu, S. N.; Qi, J. J.; Gu, Y. S.; Liu, S.; Xu, Q. K.; Wang, Z. Z.; Liang, Q. J.;Zhang, Y. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 7 (10), 4461-4467, 2015.
[57] Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R.; Bao, G.;Wang, Z. L. Piezoelectric-Potential-Control led Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters 8 (11), 3973-3977, 2008.
[58] Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.;Zhang, Y. Piezotronic Interface Engineering on ZnO/Au-Based Schottky Junction for Enhanced Photoresponse of a Flexible Self-Powered UV Detector. Acs Applied Materials & Interfaces 6 (16), 14116-14122, 2014.
[59] Liu, S. H.; Wang, L. F.; Feng, X. L.; Wang, Z.; Xu, Q.; Bai, S.; Qin, Y.;Wang, Z. L. Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging. Advanced Materials 29 (16), 1606346, 2017.
[60] Wang, Z. F.; Jiang, R. J.; Li, G. M.; Chen, Y. Y.; Tang, Z. J.; Wang, Y. K.; Liu, Z. X.; Jiang, H. B.;Zhi, C. Y. Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. Acs Applied Materials & Interfaces 9 (27), 22685-22693, 2017.
[61] Ali, F.; Raza, W.; Li, X. L.; Gul, H.;Kim, K. H. Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879-902, 2019.
[62] Xu, M. Z.; Kang, H.; Guan, L.; Li, H. Y.;Zhang, M. N. Facile Fabrication of a Flexible LiNbO3 Piezoelectric Sensor through Hot Pressing for Biomechanical Monitoring. Acs Applied Materials & Interfaces 9 (40), 34687-34695, 2017.
[63] Yoon, C.; Ippili, S.; Jella, V.; Thomas, A. M.; Jung, J. S.; Han, Y.; Yang, T. Y.; Yoon, S. G.;Yoon, G. Synergistic contribution of flexoelectricity and piezoelectricity towards a stretchable robust nanogenerator for wearable electronics. Nano Energy 91, 106691, 2022.
[64] Lee, M.; Chen, C. Y.; Wang, S.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.;Wang, Z. L. A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials 24 (13), 1759-1764, 2012.
[65] Su, Y.; Chen, C.; Pan, H.; Yang, Y.; Chen, G.; Zhao, X.; Li, W.; Gong, Q.; Xie, G.; Zhou, Y.; Zhang, S.; Tai, H.; Jiang, Y.;Chen, J. Muscle Fibers Inspired High-Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials 31 (19), 2010962, 2021.
[66] Li, W. B.; Zhao, S.; Wu, N.; Zhong, J. W.; Wang, B.; Lin, S. Z.; Chen, S. W.; Yuan, F.; Jiang, H. L.; Xiao, Y. J.; Hu, B.;Zhou, J. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret. Acs Applied Materials & Interfaces 9 (28), 23716-23722, 2017.
[67] Dutta, J.;Liu, C. P. Piezo-gated flexible transistors: A path to energy-efficient multi-functional piezotronic devices. Nano Energy 114, 11, 2023.
[68] Dutta, J.;Liu, C. P. Analytical and experimental investigation of dual-mode piezo-gated thin film transistor for force sensors. Nano Energy 95, 10, 2022.
[69] Fei, P.; Yeh, P. H.; Zhou, J.; Xu, S.; Gao, Y. F.; Song, J. H.; Gu, Y. D.; Huang, Y. Y.;Wang, Z. L. Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Letters 9 (10), 3435-3439, 2009.
[70] Wu, W. Z.; Wei, Y. G.;Wang, Z. L. Strain-Gated Piezotronic Logic Nanodevices. Advanced Materials 22 (42), 4711-4715, 2010.
[71] Han, W. H.; Zhou, Y. S.; Zhang, Y.; Chen, C. Y.; Lin, L.; Wang, X.; Wang, S. H.;Wang, Z. L. Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires. Acs Nano 6 (5), 3760-3766, 2012.
[72] Zhou, J.; Fei, P.; Gao, Y.; Gu, Y.; Liu, J.; Bao, G.;Wang, Z. L. Mechanical−Electrical Triggers and Sensors Using Piezoelectric Micowires/Nanowires. Nano Letters 8 (9), 2725-2730, 2008.
[73] Zhao, Z. F.; Pu, X.; Han, C. B.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.;Wang, Z. L. Piezotronic Effect in Polarity-Controlled GaN Nanowires. Acs Nano 9 (8), 8578-8583, 2015.
[74] Wang, Z. L. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 16 (25), R829-R858, 2004.
[75] Cao, C.; Xie, X. X.; Zeng, Y. M.; Shi, S. H.; Wang, G. Z.; Yang, L.; Wang, C. Z.;Lin, S. W. Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting. Nano Energy 61, 550-558, 2019.
[76] Pan, X. H.; Ye, Z. Z.; Li, J. S.; Gu, X. Q.; Zeng, Y. J.; He, H. P.; Zhu, L. P.;Che, Y. Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Applied Surface Science 253 (11), 5067-5069, 2007.
[77] Dejam, L.; Kulesza, S.; Sabbaghzadeh, J.; Ghaderi, A.; Solaymani, S.; Talu, S.; Bramowicz, M.; Amouamouha, M.; Shayegan, A. H. S.;Sari, A. H. ZnO, Cu-doped ZnO, Al-doped ZnO and Cu-Al doped ZnO thin films: Advanced micro-morphology, crystalline structures and optical properties. Results in Physics 44, 106209, 2023.
[78] Wang, Y.; Xie, W.; Peng, W.; Li, F.;He, Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. Micromachines (Basel) 14 (1), 47-80, 2022.
[79] Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.;Wang, Z. L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry 19 (48), 9260-9264, 2009.
[80] Yang, D. C.; Qiu, Y.; Jiang, Q. Y.; Guo, Z. S.; Song, W. B.; Xu, J.; Zong, Y.; Feng, Q. X.;Sun, X. L. Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators. Applied Physics Letters 110 (6), 063901, 2017.
[81] Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.;Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters 84 (18), 3654-3656, 2004.
[82] Wang, Z. L. Nanostructures of zinc oxide. Materials Today 7 (6), 26-33, 2004.
[83] Qian, J.; Jiang, S.; Wang, Q.; Zheng, S.; Guo, S.; Yi, C.; Wang, J.; Wang, X.; Tsukagoshi, K.; Shi, Y.;Li, Y. Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit. Scientific Reports 8 (1), 532, 2018.
[84] Lee, Y.; Kim, K. L.; Kang, H. S.; Jeong, B.; Park, C.; Bae, I.; Kang, S. J.; Park, Y. J.;Park, C. Epitaxially Grown Ferroelectric PVDF-TrFE Film on Shape-Tailored Semiconducting Rubrene Single Crystal. Small 14 (22), 1704024, 2018.
[85] Han, J.; Li, D.; Zhao, C.; Wang, X.; Li, J.;Wu, X. Highly Sensitive Impact Sensor Based on PVDF-TrFE/Nano-ZnO Composite Thin Film. Sensors 19 (4), 830, 2019.
[86] Thorpe, C. T.; Birch, H. L.; Clegg, P. D.;Screen, H. R. C., "Chapter 1 - Tendon Physiology and Mechanical Behavior: Structure–Function Relationships," in Tendon Regeneration, M. E. Gomes, R. L. Reis, and M. T. Rodrigues Eds. Boston: Academic Press, 2015, pp. 3-39.
[87] Chen, C.; Zhao, S.; Pan, C.; Zi, Y.; Wang, F.; Yang, C.;Wang, Z. L. A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nature Communications 13 (1), 1391, 2022.
[88] Chun, J. S.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.;Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications 7, 12985, 2016.
[89] Chen, S. N.; Huang, M. Z.; Lin, Z. H.;Liu, C. P. y Enhancing charge transfer for ZnO nanorods based triboelectric nanogenerators through Ga doping. Nano Energy 65, 10, 2019.
[90] Wang, Z. L. Preface to the Special Section on Piezotronics. Advanced Materials 24 (34), 4630-4631, 2012.
[91] Wu, W. Z.;Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews Materials 1 (7), 16031, 2016.
[92] Pan, C. F.; Zhai, J. Y.;Wang, Z. L. Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. Chemical Reviews 119 (15), 9303-9359, 2019.
[93] Wang, Z. L. Progress in Piezotronics and Piezo-Phototronics. Advanced Materials 24 (34), 4632-4646, 2012.
[94] Lee, P. C.; Hsiao, Y. L.; Dutta, J.; Wang, R. C.; Tseng, S. W.;Liu, C. P. Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy 82, 105702, 2021.
[95] Shi, J.; Starr, M. B.; Xiang, H.; Hara, Y.; Anderson, M. A.; Seo, J. H.; Ma, Z. Q.;Wang, X. D. Interface Engineering by Piezoelectric Potential in ZnO-Based Photoelectrochemical Anode. Nano Letters 11 (12), 5587-5593, 2011.
[96] Kang, Z.; Si, H. N.; Zhang, S. C.; Wu, J.; Sun, Y.; Liao, Q. L.; Zhang, Z.;Zhang, Y. Interface Engineering for Modulation of Charge Carrier Behavior in ZnO Photoelectrochemical Water Splitting. Advanced Functional Materials 29 (15), 2019.
[97] Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Wang, Z. L.;Li, L. Enhanced Piezo-Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array. Small 16 (18), 1907603, 2020.
[98] Yu, Q.; Ge, R.; Wen, J.; Xu, Q.; Lu, Z.; Liu, S.;Qin, Y. Electric pulse-tuned piezotronic effect for interface engineering. Nature Communications 15 (1), 4245, 2024.
[99] Hsieh, G.-W.; Ling, S.-R.; Hung, F.-T.; Kao, P.-H.;Liu, J.-B. Enhanced piezocapacitive response in zinc oxide tetrapod–poly(dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor. Nanoscale 13 (12), 6076-6086, 2021.
[100] Guo, J.; Wen, R.;Wang, Z. Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Science Bulletin 64, 128-135, 2018.
[101] Zhang, S. Q.; Gao, Y. S.; Zhao, G. Z.; Pu, H. Y.; Wang, M.; Ding, J. H.;Sun, Y. Numerical modeling for viscoelastic sandwich smart structures bonded with piezoelectric materials. Composite Structures 278, 114703, 2021.
[102] Wang, Y.; Zhang, Y.; Su, L.; Hu, S.; Xiang, P.; Zhao, X.; Liu, L.; Zhang, L.;Gao, Y. Viscoelasticity and self-healing property of dynamic covalent polymers: A molecular dynamics simulation. Polymer 295, 126775, 2024.
[103] Liu, Z. F.; Cai, Q. J.; Ma, C. H.; Zhang, J.;Liu, J. Q. Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New Journal of Chemistry 41 (16), 7947-7952, 2017.
[104] Lee, Y.; Kim, S.; Jeong, S. Y.; Seo, S.; Kim, C.; Yoon, H.; Jang, H. W.;Lee, S. Surface-Modified Co-doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol. Catalysis Today 359, 43-49, 2021.
[105] Gurylev, V.; Su, C. Y.;Perng, T. P. Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance. Applied Surface Science 411, 279-284, 2017.
[106] Zhang, S. C.; Liu, Z. F.; Ruan, M. N.; Guo, Z. G.; E, L.; Zhao, W.; Zhao, D.; Wu, X. F.;Chen, D. M. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Applied Catalysis B-Environmental 262, 118279, 2020.
[107] Liang, H. W.; Chen, Y. P.; Xia, X. C.; Feng, Q. J.; Liu, Y.; Shen, R. S.; Luo, Y. M.;Du, G. T. Influence of Sb valency on the conductivity type of Sb-doped ZnO. Thin Solid Films 589, 199-202, 2015.
[108] Hsiao, Y. L.; Chen, P. C.; Gupta, K.; Lai, C. C.; Pu, Y. C.;Liu, C. P. Piezocatalytic and doping effects synergistically enhance the oxygen evolution in Sb-doped zinc oxide nanorod arrays as a photoanode for photoelectrochemical water splitting. Mrs Energy & Sustainability 9 (1), 19-27, 2022.
[109] Li, Z.; Zheng, Q.; Wang, Z. L.;Li, Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research 2020, 8710686, 2020.
[110] Maity, K.; Garain, S.; Henkel, K.; Schmeisser, D.;Mandal, D. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics. Acs Applied Materials & Interfaces 10 (50), 44018-44032, 2018.
[111] Wang, C. H.; Liao, W. S.; Ku, N. J.; Li, Y. C.; Chen, Y. C.; Tu, L. W.;Liu, C. P. Effects of Free Carriers on Piezoelectric Nanogenerators and Piezotronic Devices Made of GaN Nanowire Arrays. Small 10 (22), 4718-4725, 2014.
[112] Kang, J. H.; Jeong, D. K.; Ha, J. S.; Lee, J. K.;Ryu, S. W. Enhanced performance of a GaN piezoelectric nanogenerator with an embedded nanoporous layer via the suppressed carrier screening effect. Semiconductor Science and Technology 32 (2), 2017.
[113] Wang, L.; Liu, S.; Feng, X.; Xu, Q.; Bai, S.; Zhu, L.; Chen, L.; Qin, Y.;Wang, Z. L. Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano 11 (5), 4859-4865, 2017.
[114] Kim, S.; Seol, D.; Lu, X. L.; Alexe, M.;Kim, Y. Electrostatic-free piezoresponse force microscopy. Scientific Reports 7, 41657, 2017.
[115] Lovinger, A. J. Ferroelectric Polymers. Science 220 (4602), 1115-1121, 1983.
[116] Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.;Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 313 (5785), 334-6, 2006.
[117] Liu, Y.; Aziguli, H.; Zhang, B.; Xu, W.; Lu, W.; Bernholc, J.;Wang, Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562 (7725), 96-100, 2018.
[118] An, S.; Sankaran, A.;Yarin, A. L. Natural Biopolymer-Based Triboelectric Nanogenerators via Fast, Facile, Scalable Solution Blowing. Acs Applied Materials & Interfaces 10 (43), 37749-37759, 2018.