| 研究生: |
陳啟漳 Chen, Chi-Chang |
|---|---|
| 論文名稱: |
有機胺對製備金屬奈米粒子效應之研究 Studies on Effects of Amines on Generation of Metal Nanoparticles |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 奈米粒子 、有機胺 |
| 外文關鍵詞: | nanoparticles, organic amines |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以含有機胺之聚矽氧烷高分子及親油基改質聚乙烯亞胺高分子作為高分子保護劑,以化學還原法於有機相及水相中製備金屬(Au, Ag)奈米粒子。藉著形成所謂軟模版(soft templates)或是吸附在無機固體表面(solid substrates)的方式,利用胺基與金屬前驅鹽在侷限的環境下形成錯合物後,再使用化學方法製備出金屬奈米粒子。本論文分為以下四個部份:
1. 使用具不同側鏈型親水基之聚矽氧烷高分子在使用NaBH4為還原劑下,製備出銀奈米粒子。探討高分子親水基含量、高分子與金屬鹽比例及側鏈親水基對製備銀奈米粒子之影響。由結果顯示聚矽氧烷高分子唯有在側鏈親水基與金屬鹽存在有效作用力時,才可製備出穩定之金屬膠體溶液。
2. 使用親油基改質聚乙烯亞胺高分子在不使用額外還原劑下,製備出金奈米粒子。親油基改質程度較高之高分子可形成緊密之高分子聚集,並有效還原金屬前驅鹽。親油基改質聚乙烯亞胺高分子可同時具有還原劑、保護劑的功能,有效簡化製備穩定金屬膠體溶液。
3. 使用藉聚乙烯亞胺高分子改質之蒙脫土製備出金、銀奈米粒子。在蒙脫土存在下,其可作為固體基材固定並限制具胺基之高分子,藉此形成小而穩定之金屬奈米粒子。在高分子較高的酸化情形下,在固體基材表面之聚乙烯亞胺高分子可大量、快速並有效率地製備出金、銀奈米粒子。
4. 最後這個部份使用結構簡單並具有機胺之小分子,探討有機胺在與金屬前驅鹽進行氧化還原反應時所發生的變化。有趣的是,過程中發現金屬與反應即時生成之有機物形成1D nanowires 及 3D threads結構。這個過程可提供一個由奈米尺寸到微米尺寸組裝奈米粒子結構便利的方法。
In this dissertation, organic amines were utilized for the preparation metal nanoparticles. The metal nanoparticles were synthesized by a so-called soft or hard template approach in which metal ions are extracted by the applied amino groups and subsequently chemically reduced to form the nanoparticles. Essentially, the template acts as a skeleton for the nanoscale synthesis in a confined environment. And, the stabilities and morphologies of the resulted metal colloids associated with the properties of amines were investigated. This monograph is divided into four parts as follows:
1. Silicone copolymers with varying weight percents of hydrophilic amino groups with or without charge were used as protectors to stabilize the silver nanoparticles prepared by chemical reduction of Ag+ ion with sodium borohydride NaBH4, and the effects hydrophobic moiety and hydrophile on protection were investigated. UV-vis spectroscopy was employed to characterize the silver colloids, and transmission electron microscopy (TEM) was used to determine the metal particle sizes and morphologies. The results strongly suggest that the silicone copolymers can effectively protect the silver nanoparticle only if its hydrophile can interact with metal ion or nanoparticles.
2. Mono-, and di-alkylated polyethylenimines (PEI-1R, PEI-2R) were synthesized and used as both a reductant through the self-reduction by the amino groups in polyethylenimine (PEI) and a stabilizer to protect gold nanoparticles generated from hydrogen tetrachloroaurate (HAuCl4) precursor. The highly alkylated polymer micelles (PEI-2R) result in the faster reduction rate to gold ion and the most effective protection to the generated gold nanoparticles. Above their micelle-forming concentrations, it was found that polymer hydrophobicity highly influenced the nanoparticle morphology, i.e., the resulted polymer micelles labeled with perfect and round necklace-like gold nanoparticles for PEI-2R, but with imperfect and less round gold nanoparticles for PEI-1R, and totally can not be observed for PEI. The alkylated PEI simultaneously acts as both a reductant and a very effective protective agent, and significantly simplifies the process as to be used for preparing gold nanoparticles.
3. Polyethylenimine-modified montmorillonite (N-MMT) was used to prepare gold nanoparticles, where the montmorillonite (MMT) acted as a solid support to retain the conformation of polyethylenimine (PEI), and the amino groups of PEI were used simultaneously to both complex and reduce the gold ions. In the presence of MMT, the formation of a flattened configuration on the clay instead of stretched-out ethylenimine segments of PEI results in the formation of smaller gold particles. With a higher acidification ratio, the recharging of the MMT surface with positive ammonium ionic sites of PEI is likely to prevent the flocculation of clay and thus facilitate the reduction of gold.
4. In the last part, we report a self-organization of gold nanoparticles into nanowires, and then evolution into microscale threads through a redox reaction between triethylamine and HAuCl4, where triethylamine not only acts as a reductant to generate gold nanoparticles but also becomes a precursor to build up alkane-like substances to constitute gold thread. 1D nanowires and 3D threads constructed by gold nanoparticles can be prepared easily by the reaction triethylamine and HAuCl4. The present work provides a facile approach to assemble gold nanoparticles for architectures ranging from the nanoscale to the microscale.
[1] Gleiter, H. Adv. Mater. 1992, 4, 474.
[2] Seigel, R. W. Mater. Sci. Eng. B 1993, 3, 1.
[3] Nalwa, H. S., Ed. “Nanostructured Materials and Nanotechnology”, Academic Press, San Diego, 2002.
[4] Cahn, R. W. Nature 1990, 348, 389.
[5] Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
[6] Beck, D. D.; Seigel, R. W. J. mater. Res. 1992, 7, 2840.
[7] Koch, C. C. Nanostruct. Mater. 1993, 2, 109.
[8] Embury, J. D. in: “Strengthening Methods in Crystals” (Kelly, A.; Nicolson, R. B. eds.) p.331. Applied Science Publishing, London, 1971.
[9] (a) Aita, C. R. Nanostruct. Mater. 1994, 4, 257. (b) Kameyama, T. et al., J. Mater. Sci. 1994, 25, 1058.
[10] (a) Rivas, J. et al., J. Magn. Magn. Mater. 1993, 122. (b) Chang, W. et al., Nanostruct. Mater. 1994, 4, 345.
[11] Seigel, R. W. “Materials Science and Technology” (Cahn, R. ed.), vol. 15, p. 583. VCH, Weinheim, Germany, 1991.
[12] (a) Hellstern, E.; Fecht, H. J.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1989, 65, 305. (b) Kock, C.C.; Jang, J. S. C.; Gross, S. S. J. Mater. Res. 1989, 4, 557.
[13] Psaras, P. A.; Langford, H. D. eds., “Advancing Materials Research, U.S. National Academy of Engineering and National Academy of sciences”, National Academy Press, Washington, DC, 1987.
[14] Rao, C. N. R. Mater. Sci. Eng. B 1993, 18, 1.
[15] LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.
[16] Xu, Q.; Anderson, M. A. J. Am. Chem. Soc. 1994, 77, 1939.
[17] Kloster, G. M.; Thomas, J. A.; Brazis, P. W.; Kannewurf, C. R.; Shriver, D. F. Chem. Mater. 1996, 8, 2418.
[18] Cao, X.; Koltpin, Y.; Kataby, G.; Prozorov, R.; Gedanken, A. J. Mater. Res. 1995, 10, 2952.
[19] Goia, D. V.; Matijevic, E. New J. Chem. 1998, 1203.
[20] Graham, T. Philos. Trans. R. Soc. 1861, 151, 183.
[21] Turkevitch, J. Gold Bull. 1985, 18, 86.
[22] (a) Antonietti, M.; Wenz, E.; Bronstein, L.M.; Seregina, M. Adv. Mater. 1995, 7, 1000. (b) Seregina, M. V.; Bronstein, L.M.; Platonova, O. A.; Chernyshov, D. M.; Valetsky, P. M.; Wenz, E.; Antonietti, M. Chem. Mater. 1997, 9, 923. (c) Klingelhofer, K.; Heitz, W.; Greiner, A.; Oestreich, S.; Forster, S.; Antonietti, M. J. Am. Chem. Soc. 1997, 119, 10116.
[23] (a) Manna, A.; Imae, T.; IiDa, M.; Hisamatsu, N. Langmuir 2001, 17, 6000. (b) Tu, W.; Liu, H.; Liew, K. Y. J. Colloid Interface Sci. 2000, 229, 453. (c) Mayer, A. B. R.; Hausner, S. H.; Mark, J. S. Polym. J. 2000, 32, 15. (d) Zhao, M.; Crooks, R. M. Chem. Mater. 1999, 11, 3379.
[24] (a) Kuo, P. L.; Liang W. J.; Wang, F. Y. J. Polym. Sci. A: Polym Chem 2003, 41, 1360. (b) Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
[25] Faraday, M. Philos. Trans. R. Soc. London A 1857, 147, 145.
[26] Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757.
[27] Labib, M. E. Colloids Surf. 1988, 29, 293.
[28] (a) Frike, R. G. in: “Metal Nanoparticles: Synthesis, Characteriation and Applications” (Feldhein, D. L.; Foss, C. A. eds.) p.17. Marcel Dekker, New York, 2002; Aliken, J. D., III; Finke, R. G. J. Mol. Catal. A: Chem. 1999, 145, 1. (b) Derjaguin, B. V.; Landau, L. Acta Physicochim. 1941, 14, 633. (c) Verwey, E. J. W.; Overbeek. J. Th. G. In Theory of the Stability of Lyophobic Colloids, Elsevier Publishing Co., Amsterdam, 1948.
[29] (a) Mackor, E. L. J. Colloid Interface Sci. 1951, 6, 492. (b) Mackor, E. L.; van der Waals, J. H. J. Colloid Interface Sci. 1952, 7, 535. (c) Fischer, E. W. Kolloid-z. 1958, 160, 120. (d) Ottewill, R. H.; Walker, T. Kolloid-Z. Z. Polym. 1968, 227, 108. (e) Hesselink, F. Th. J. Phys. Chem. 1971, 75, 65. (f) Napper, D. H. in: “Polymeric Stabilization of Colloidal Dispersions” Academic Press, London, 1983.
[30] (a) Vincent, B. Adv. Colloid Interface Sci. 1974, 4, 193. (b) Napper, D. H. Ind. Eng. Chem. Prod. Res. Develop. 1970, 9, 467.
[31] (a) Aliken, J. D., III; Finke, R. G. J. Mol. Catal. A: Chem. 1996, 114, 29. (b) Amiens, C.; Schimd, G.; Meyer-Zaika, W. J. Chem. Soc., Chem. Commun. 1995, 31.
[32] (a) Perrersson, A.; Marino, G.; Pursiheimo, A.; Rosenholm, J. B. J. Colloid Interface Sci. 2000, 228, 73. (b) Laarz, E.; Bergström, L. J. Eur. Ceram. Soc. 2000, 20, 431. (c) Gurovitch, E.; Sens, P. Phys. Rev. Lett. 1999, 82, 339.
[33] (a) Larpent, C.; Menn, F. B.; Patin, H. J. Mol. Catal. 1991, 65, 35. (b) Duff, D. G. et al. J. Chem. Soc., Chem. Commun. 1987, 1264.
[34] Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Eds. “Handbook of Conducting Polymers”, Marcel Dekker, New York, 1998.
[35] Yang, H.; Bard, A. J. J. Electroanal. Chem. 1992, 339, 423.
[36] Larumbe, D.; Gallardo, I.; Andrieux, C. J. Electroanal. Chem. 1991, 304, 241.
[37] (a) Andrieux, C. P.; Gallardo, I.; Junca, M. J. Electroanal. Chem. 1993, 354, 231. (b) Serve, D. Electrochim. Acta 1975, 20, 101. (c) Dinnocenzo, J. P.; Banach, T. E. J.Am. Chem. Soc. 1989, 111, 8646.
[38] (a) Mann, C. K.; Barnes, K. K. “Electrochemical Reactions in Nonaqueous System”, Marcel Dekker, New York, 1970. (b) Portis, L. C.; Bhat, V. V.; Mann, C. K. J. Org. Chem. 1970, 35, 2175.
[39] Deno, N. C.; Friut, R. E. J. Am. Chem. Soc. 1968, 90, 3502.
[40] Rawalay, S. S.; Shechter, H. J. Org. Chem. 1967, 32, 3129.
[41] (a) Groves, J. T. J. Chem. Educ. 1985, 62, 928. (b) Sheik, R. A.; Waters, W. A. J. Chem. Soc. 1970, 988. (c) Rosenblatt, D. H.; Hayers Jr., A. J.; Holoson, B. L.; Streaty, R. A.; Moore, K. A. J. Org. Chem. 1963, 28, 2790.
[42] (a) Hou, S. S.; Chung, Y. P.; Chan, C. K.; Kuo, P. L. Polymer 2000, 41, 3263. (b) Kuo, P. L.; Hou, S. S.; Teng, C. K.; Liang, W. J. Colloid. Polym. Sci. 2001, 279, 286.
[43] (a) Mayer, A. B. R.; Hausner, S. H.; Mark, J. E. Polym. J. 2000, 32, 15. (b) Mayer, A. B. R.; Mark, J. E. Colloid. Polym. Sci. 1997, 275, 333. (c) Mayer, A. B. R.; Mark, J. E.; Hausner, S. H. J. Appl. Polym. Sci. 1997, 68, 1209.
[44] (a) Loginova, T. P.; Bronstein, L. M.; Mirzoeva, ESh; Ezernitskaya, M. G.; Lokshin, B.V.; Genin, YaV.; Valetsky, P. M. Polym. Sci. 1993, 35, 21. (b) Mayer, A. B. R.; Mark, J. E. J. Polym. Sc.i A: Polym. Chem. 1997, 35, 3151.
[45] (a) Zhu, S.; Miller, W. G.; Scriven, L. E.; Davis, H. T. Colloids. Surf. A 1994, 90, 63. (b) Klok, H. A.; Eibeck, P.; Moeller, M.; Reinhoudt, D. N. Macromolecules 1997, 30, 795.
[46] Bohren, C. F.; Huffman, D. R. “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1983.
[47] (a) Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. J. Am. Chem. Soc. 2000, 122, 4640. (b) Lazarides, A. A.; Schatz, G. C. J. Phys. Chem. B 2000, 104, 460. (c) Schatz, G. C. Acc Chem. Res. 1984, 17, 370.
[48] (a) Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723. (b) Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Langmuir 2001, 17, 6000.
[49] Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
[50] (a) Petit, C.; Lixon, P.; Pileni, M. P. J. Phys. Chem. 1993, 97, 12974. (b) Huang, Z. Y.; Mills, G.; Hajek, B. J. Phys. Chem. 1993, 97, 11542.
[51] Thunemann, A. F. Langmuir 2000, 16, 9634.
[52] Bekturov, E. A.; Mamutbekov, G. K. Macromol. Chem. Phys. 1997, 198, 81.
[53] Kramer, G.; Buchhammer, H. M.; Lunkwitz, K. Colloids. Surf. A 1998, 137, 45.
[54] Stroeve, P.; Os, M.; Kunz, R.; Rabolt, J. F. Thin Solid Films 1996, 284, 200.
[55] (a) Kalyansundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1997, 99, 2039. (b) Ananthapadmanabhan, K. P.; Goddard, E. D.; Turro, N. J.; Kuo, P. L. Langmuir 1985, 1, 352.
[56] Pease, C. W. J. Ultrastruct. Res. 1966, 15, 555.
[57] Keene, F. R. Coordin. Chem. Rev. 1999, 187, 121.
[58] Sarathy, K. V., Raina, G., Yadav, R. T., Kulkarni, G. U.; Rao, C. N. R. J. Phys. Chem. B 1997, 101, 9876.
[59] (a) Selvakannan, P. R.; Kumar, P. S.; More, A. S.; Shingte, R. D.; Wadgaonkar, P. P.; Sastry, M. Langmuir 2004, 20, 295. (b) Selven, S. T. Chem. Commun. 1998, 3, 351. (c) Dai, J.; Bruening, M. L. Nano Lett. 2002, 2, 497.
[60] Thiele, H.; Levern, H. S. J. Colloid Sci. 1965, 20, 679.
[61] Malla, P. B.; Ravindranathan, P.; Komarneni, S.; Breval, E.; Roy, R. J. Mater. Chem. 1992, 2, 559.
[62] Malla, P. B.; Ravindranathan, P.; Komarneni, S.; Breval, E.; Roy, R. Nature 1991, 351, 555.
[63] Ahmed, O. S.; Dutta, D. K. Langmuir 2003, 19, 5540.
[64] Cullity, B. D.; Stock, S. R. “Elements of X-Ray Diffraction”, Third Edition, Prentice Hall, New Jersey, 2001, p. 402.
[65] Sun, X.; Dong, S.; Wang, E. Angew. Chem. Int. Ed. 2004, 43, 6360.
[66] Taub, N.; Krichevski, O.; Markovich, G. J. Phys. Chem. B 2003, 107, 11579.
[67] Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473.
[68] Horn, D. in: Goethals, E. J. (Ed.) “Polymeric Amines and Ammonium Salts”, Pergamon, New York, 1980, p. 333.
[69] (a) Uzgiris, E. E.; Costaschuk, F. M. Nature Phys. Sci. 1973, 242, 77. (b) Lanzon, R. V.; Schmidt, D. D. J. Appl. Polym. Sci. 1974, 18, 3319. (c) Lindquist, G. M.; Stratton, R. A. J. Colloid Interface Sci. 1976, 55, 45.
[70] Zou, J.; Guo, Z.; Parkinson, J. A.; Chen, Y.; Sadler, P. J. Chem. Commun. 1999, 1359.
[71] (a) Alince, B.; Robertson, A. A. Colloid Polym. Sci. 1974, 252, 920. (b) Allan, G. G.; Akagana, K.; Neogi, A. N.; Reif, W. M.; Mattila, T. Nature 1970, 225, 175.
[72] Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T. Langmuir 1996, 12, 3038.
[73] (a) Witten Jr., T. A.; Sander, L. M. Phys. Rev. Lett. 1981, 47, 1400. (b) Forrest, R. R.; Witten Jr., T. A. J. Phys. A 1979, 12, L109.
[74] (a) Meakin, P. Phys. Rev. Lett. 1983, 51, 1119. (b) Kolb, M.; Botet, R.; Julien, R. Phys. Rev. Lett. 1983, 51, 1123.
[75] (a) Honda, K.; Yamada, N.; Sano, M.; Yoshimura, S. J. Mater. Res., 1999, 14, 968. (b) Han, M. Y.; Quek, C. H.; Huang, W.; Chew, C. H.; Gan, L. M. Chem. Mater., 1999, 11, 1144.
[76] Oku, T.; Suganuma, K. Chem. Commun. 1999, 2355.
[77] Pang, S.; Kondo, T.; Kawai, T. Chem. Mater. 2005, 17, 3636.
[78] Sohnel, O.; Garside, J. “Precipitation: Basic Principles and Industrial Applications”, Butterworth-Heinemann, Oxford, UK, 1992.
[79] Chow, M. K.; Zukoski, C. F. J. Colloid Interface Sci., 1994, 165, 97.
[80] Taqui Khan, M. M.; Chatterjee, D.; Kumar, S.; Merchant, R. R.; Bhatt, K. N. J. Mol. Catal., 1991, 67, 317.
[81] Ross, S. D. Tetrahedron Lett. 1973, 15, 1237.
[82] McMohan, R. E.; Culp, H. W.; Occolowitz, J. C. J. Am. Chem. Soc. 1969, 91, 3389.
[83] Murahashi, S.; Watanabe, T. J. Am. Chem. Soc. 1979, 101, 7429.
[84] Taqui Khan, M. M.; Mirza, S. A.; Bajaj, H. C. J. Mol. Catal. 1986, 37, 253.