簡易檢索 / 詳目顯示

研究生: 李銘偉
Lee, Ming-Wei
論文名稱: 使用反射式頻域光子遷移系統快速量化組織血氧飽和濃度及動脈血氧飽和濃度
Using a frequency domain photon migration system in the reflectance mode for rapidly quantifying the tissue oxygen saturation and arterial oxygen saturation
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 133
中文關鍵詞: 反射式動脈血氧計頻域光子遷移系統光學參數動脈血氧飽和濃度組織血氧飽和濃度靜脈閉鎖
外文關鍵詞: pulse oximetry in the reflectance mode, frequency domain photon migration system, optical properties, arterial oxygen saturation, tissue oxygen saturation, vein atresia
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文發展了一反射式頻域光子遷移系統快速量化組織血氧飽與濃度及動脈血氧飽和濃度,此架構改善了市售血氧計的缺點及限制,包含了反射式量測架構克服穿透式量測位置的限制,而優勢有可以同時量測組織血氧和動脈血氧飽和濃度和更廣泛的量測動脈血氧飽和濃度範圍。
    而在實驗結果呈現我們頻域光子遷移系統快速量測假體的光學參數精確性,平均絕對誤差百分比,三個波長下最低從1.3%至最高約11%,說明本系統反算光學參數的精確性合理範圍內。
    人體實驗我們共量測6位健康成年人,4位男性,2位女性,量測位置有手指和手掌兩部位,量測環境有靜態穩定下以及使用壓力帶60mmHg達到靜脈閉鎖下量測,而我們分析了各個波長下的吸收係數、縮減散射係數、帶氧和不帶氧血紅素濃度、組織血氧飽和濃度、脈動產生帶氧和不帶氧血紅素濃度變化量、動脈血氧飽和濃度、以及各個波長光學參數的頻域響應分析等資訊,本系統雖能提供相當豐富的生理資訊,但相對地系統的穩定性占了想當大的重要性,由章節4.3人體實驗,系統的穩定性還有進步的空間可以做改善,未來我們將會以系統穩定性的改善為第一目標。

    A frequency domain photon migration system in the reflectance mode for rapidly quantifying the tissue oxygen saturation and arterial oxygen saturation are presented in this study. The proposed system improves the shortcomings and limitations of the commercial pulse oximeters, including the reflectance mode overcomes the position limits of the transmissive mode, while the advantages of measuremental method can simultaneously measure the tissue oxygen saturation and arterial oxygen saturation and widely measuring range of arterial oxygen saturation.
    The results presented in the frequency domain photon migration system, we rapidly measured the accuracy of optical properties and mean absolute percentage error in three wavelengths which from 1.3% to about 11%, indicating the accuracy of optical properties within a reasonable range.
    In vivo experiments we measured six healthy adults totally, four men and two women, the measured positions include two parts: fingers and palm, measured environment is under static stability and under pressure with 60mmHg reached vein atresia.
    We analyzed the absorption coefficient, reduced scattering coefficient for each wavelength, oxy-hemoglobin concentration, deoxy-hemoglobin concentration, tissue oxygen saturation, pulsating with change amount of oxy-hemoglobin concentration and deoxy-hemoglobin concentration, arterial oxygen saturation, and optical properties of frequency domain response analysis information for each wavelength. The system can provide a wealth of physiological information, but relatively stability of the system is very important. In vivo experiments in Section 4.3, stability of the system can become better. We will improve the stability of the system for the first goal in future work.

    摘要 I 致謝 V 表目錄 VIII 圖目錄 IX 一.序論 1 1.1背景 1 1.2研究動機: 2 1.3研究目的 4 二.背景理論 6 2.1 比爾定律(BEER’S LAW) 6 2.2輻射轉換方程式(RADIATIVE TRANSPORT EQUATION, RTE) 9 2.3擴散理論(DIFFUSION THEORY) 13 2.4邊界條件(BOUNDARY CONDITION) 16 三.材料與方法 20 3.1 頻域光子遷移系統架構 20 3.2 頻域光子遷移系統穩定性 24 3.3 固態假體 25 3.4 假體與組織的光學參數決定 27 3.5 色團擬合: 組織光學參數計算生理參數 30 四.結果與討論 32 4.1系統比較及最佳化 32 4.1.1單頻與多頻之頻域光子遷移系統比較 32 4.1.2 加入放大器,分頻器,帶通濾頻器之單頻與多頻 頻域光子遷移系統比較 34 4.1.3 不同IF Bandwidth的Macro量測時間 37 4.1.4 兩波長長時間系統穩定性 40 4.1.5兩波長和三波長的系統比較 42 4.1.6 三波長系統加入衰減片改善系統穩定度比較 44 4.2反算假體光學參數誤差比較系統穩定性 47 4.2.1兩波長系統,反算假體光學參數誤差呈現短時間穩定性和頻域響應 47 4.2.2三波長系統,反算假體光學參數誤差呈現短時間穩定性和頻域響應 53 4.3量測人體動脈和組織血氧飽和濃度實驗 62 4.3.1兩波長系統之動脈和組織血氧飽和濃度實驗 62 4.3.2三波長系統之動脈和組織血氧飽和濃度實驗 67 4.3.3靜脈閉鎖之動脈和組織血氧飽和濃度實驗 116 五.結論與未來工作 126 5.1結論 126 5.2未來工作 128

    1. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Applied optics 36, 10-20 (1997).
    2. A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, "Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media," Applied optics 39, 1659-1667 (2000).
    3. "Bureau of Health Promotion, Department of Health, R.O.C. (Taiwan)," http://www.bhp.doh.gov.tw/BHPnet/Portal/Default.aspx.
    4. G. T. Herman, "Fundamentals of Computerized Tomography: Image Reconstruction from Projections," (2009).
    5. E. J. Hall, and D. J. Brenner, "Cancer risks from diagnostic radiology," The British journal of radiology 81, 362-378 (2008).
    6. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Applied optics 37, 3586-3593 (1998).
    7. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Applied optics 36, 125-135 (1997).
    8. F. Bevilacqua, P. Marquet, O. Coquoz, and C. Depeursinge, "Role of tissue structure in photon migration through breast tissues," Applied optics 36, 44-51 (1997).
    9. I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," Applied optics 34, 7410-7418 (1995).
    10. C.-H. Chung, "Analysis of breast cancer detection using near-infrared," in Department of Electrical Engineering( Nation Cheng Kung University, 2011).
    11. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Applied optics 35, 2304-2314 (1996).
    12. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. vandenBergh, "Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry," Applied optics 35, 1756-1766 (1996).
    13. R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, "Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy," Photochemistry and photobiology 66, 326-335 (1997).
    14. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Applied optics 38, 4939-4950 (1999).
    15. E. L. Hull, M. G. Nichols, and T. H. Foster, "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes," Physics in medicine and biology 43, 3381-3404 (1998).
    16. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Applied optics 36, 386-396 (1997).
    17. T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo," Medical physics 19, 879-888 (1992).
    18. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Appl Phys Lett 74, 874-876 (1999).
    19. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, "Properties of Photon Density Waves in Multiple-Scattering Media," Applied optics 32, 607-616 (1993).
    20. E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, "Fluorescence lifetime spectroscopic imaging with measurements of photon migration," Ann Ny Acad Sci 838, 46-57 (1998).
    21. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev Sci Instrum 69, 3457-3481 (1998).
    22. M. Gerken, and G. W. Faris, "Frequency-domain immersion technique for accurate optical property measurements of turbid media," Optics letters 24, 1726-1728 (1999).
    23. S. Fantini, M. A. Franceschinifantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, "Frequency-Domain Multichannel Optical-Detector for Noninvasive Tissue Spectroscopy and Oximetry," Opt Eng 34, 32-42 (1995).
    24. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Applied optics 39, 6498-6507 (2000).
    25. J. Zhao, H. S. Ding, X. L. Hou, C. Le Zhou, and B. Chance, "In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy," Journal of biomedical optics 10 (2005).
    26. M. A. Franceschini, E. Gratton, and S. Fantini, "Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain," Optics letters 24, 829-831 (1999).
    27. G. Q. Yu, T. Durduran, D. Furuya, J. H. Greenberg, and A. G. Yodh, "Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics," Applied optics 42, 2931-2939 (2003).
    28. a.-I. W. L.V. Wang, "Biomedical Optics: Principles and Imaging," (2007).
    29. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, "Boundary-Conditions for the Diffusion Equation in Radiative-Transfer," J Opt Soc Am A 11, 2727-2741 (1994).
    30. "Silicone Phantom Instructions (Breast Phantom) ".
    31. S. Prahl, "Hemoglobin absorption coefficient," (1999).
    32. Z. G. Wang, Guangyu Li,Ziang Feng, "Adaptive pulse oximeter with dual-wavelength based on wavelet transforms."

    無法下載圖示 校內:2020-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE