簡易檢索 / 詳目顯示

研究生: 江炫儒
Chiang, Hsuan-Ju
論文名稱: 電解反應器進出口歧管與流道設計
The Manifold Shape and Flow Channel Design of an Electrolytic Cell
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 119
中文關鍵詞: 最佳化分析電解槽流道設計氣泡分析
外文關鍵詞: Optimization, Shape design, Micro-channel, bubble
相關次數: 點閱:54下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前丙烯腈電解製備己二腈之電解槽為單一流道電解槽,為了提高電解效率和己二腈的產量,需要對電解槽做多流道並聯設計。而多流道並聯設計會造成各流道速度不均勻分佈,而流道的速度對己二腈之選擇性和電流效率都有著顯著的影響,能否將流道速度控制於一定範圍將大大地影響反應的效率。因此,本文提出電解槽多流道並聯均勻性流速之最佳化設計,以改善因流速不均勻而導致各項副產物增加的現象及增強電流效率和己二腈之選擇性。
    本文分析三維電解槽之進出口管徑(15.9mm、19.0mm)、管嘴置於電解槽正面(正面進出口、front inlet,outlet)、側面(側面進出口、side inlet,outlet)與流向(平行流、逆向流)對流道速度均勻度之影響,模擬結果顯示上述參數對速度均勻度有極大的影響。管外徑15.9mm下正面進出口逆向流設計之電解槽速度均勻度為93.99%,而側面進出口逆向流之電解槽速度均勻度僅有64.81%。本文亦結合數值模擬軟體與簡易共軛梯度法最佳化單元程式,針對簡化之二維電解槽模型,以流道均勻性流速為目標,藉由程式自動找出最佳之流道歧管形狀參數(shape optimizationm)。搜尋結果顯示最佳化搜尋能有效的增加流速均勻性,最佳化後側邊進出口平行流之速度均勻性由89.68%提高至98.92%,側邊進出口逆向流之速度均勻性由95.12%提高至99.47%。
    在電解過程中陽極副產物為氧氣,由於氣體電導度較低,氣體生成將降低流體電導度與電流密度,使電解槽內電解效率下降,本文以離散相模型(discrete phase model,DPM)模擬壁面均勻生成氣泡流,並分析電導度、電流密度因氣泡累積而下降之影響。結果顯示進口流速為1.5m/s時,出口電流密度由2000 A/m2下降至1604 A/m2(下降19.8%),0.3m/s時,出口電流密度由2000 A/m2下降至1298 A/m2(下降35.1%),並且下降量呈現隨流速、壁面氣泡直徑降低而增加的趨勢。

    The study is focused on geometry design for the flow channels that are used to manufacture Hexanedinitrile ((CH2)4(CN)2).There is no denying that asking the average velocity in each microchannel to be nearly the same is extremely crucial during production;As a result,we are going to achieve this goal by adjusting inlet and oulet arrangement,flow direction,pipe diameter and manifold shape of the inlet or outlet. Flow stimulation in a microchannel are predicted using a commercial computational fluid dynamics code.At the same time,the whole optimization searching procedure will be conducted by fortran code,using simplified conjugate-gradient method.In the present study, the geometrical optimization tasks involve the designs of the inlet manifold or outlet manifold shapes under parallel flow or inverse flow, and the design purpose is to obtain a uniform flow distribution throughout every single microchannel so as to increase the production rate of Hexanedinitrile((CH2)4(CN)2). Cubic-spline interpolation is used in shape design to fit the points on the manifold shape more smoothly.
    The results show that inversed flow with front inlet and outlet give the best uniformity of velocityAlso,the velocity standard deviation increased from 89.7% to 98.9 (parallel flow) and 95.1% to 99.4% (inverse flow) after searching the optimal manifold shapes respectively. The manifold shapes of the inlet and outlet can efficiently lead to significant uniformity in the flow fields using a simplified conjugate-gradient method.
    In the process of electrolyzing acrylonitrile(CH2CHCN),oxygen bubbles will generate at the surface of anode.With the increasing amount of oxygen bubbles showing up in the electrolyzing bath,the current density in the electrolyzing bath will decreased, leaving a negative effect on the whole production.As a result,the reduction of current density and electrical conductivity of fluid due to bubbles will be studied by adjusting inlet velocity and bubble diameters.The whole stimulation will be carried out by using discrete phase model to track bubbles.
    The results show that current density decreased from 2000 A/m2 to 1298 A/m2 when the inlet velocity is set at 0.3m/s and 2000 A/m2 to 1604 A/m2 when the inlet velocity is set at 1.5m/s.

    目錄 摘要 I 目錄 XII 圖目錄 XIV 表目錄 XVII 符號說明 XVIII 第一章 緒論 1 1.1. 前言 1 1.2. 文獻回顧 3 1.3. 研究動機與目的 8 第二章 理論模式 10 2.1電解槽進出口參數分析與最佳化分析 10 2.1.1 物理模型 10 2.1.2 控制方程式 25 2.1.3 邊界條件 27 2.2 電解槽壁面之上升氣泡數值分析 28 2.2.1 物理模型 28 2.2.2 控制方程式 32 2.2.3 邊界條件 36 第三章 數值分析 38 3.1數值方法 38 3.1.1 通用守恆方程式 39 3.1.2有限體積法 39 3.1.3 SIMPLEC 演算法 42 3.1.4 邊界條件之離散 45 3.1.5 網格測試 46 3.2最佳化方法 57 3.2.1 目標函數的定義 57 3.2.2 共軛梯度法 57 3.2.3 簡易共軛梯度法 59 3.2.4 最佳化執行流程 59 第四章 結果與討論 65 4.1 電解槽進出口參數分析與最佳化分析 65 4.1.1進出口參數分析 65 4.1.2最佳化分析 68 4.2 電解槽壁面之上升氣泡數值分析 95 第五章 結論 114 5.1 電解槽進出口參數分析與最佳化分析 114 5.2電解槽壁面之上升氣泡數值分析 114 參考文獻 116

    1. 王啟川,熱交換設計,chapter13,三民書局,台北,台灣,2007。
    2. Bassiouny, M. K., & Martin, H. Flow distribution and pressure drop in plate heat exchangers—I U-type arrangement. Chemical Engineering Science, 39(4), 693-700.,1984.
    3. Bassiouny, M. K., & Martin, H. Flow distribution and pressure drop in plate heat exchangers—II Z-type arrangement. Chemical Engineering Science, 39(4), 701-704.,1984.
    4. Ahn, H., Lee, S., & Shin, S. Flow distribution in manifolds for low Reynolds number flow. KSME International Journal, 12(1), 87-95., 1998.
    5. Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., & Hashimoto, I. CFD-based optimal design of manifold in plate-fin microdevices. Chemical Engineering Journal, 101(1-3), 397-402., 2004.
    6. Delsman, E. R., Pierik, A., De Croon, M. H. J. M., Kramer, G. J., & Schouten, J. C. Microchannel plate geometry optimization for even flow distribution at high flow rates. Chemical Engineering Research and Design, 82(2), 267-273., 2004.
    7. Balaji, S., & Lakshminarayanan, S. Improved design of microchannel plate geometry for uniform flow distribution. The Canadian Journal of Chemical Engineering, 84(6), 715-721.,2006.
    8. Pan, M., Tang, Y., Pan, L., & Lu, L. Optimal design of complex manifold geometries for uniform flow distribution between microchannels. Chemical Engineering Journal, 137(2), 339-346.,2008.
    9. Carton, J. G., & Olabi, A. G. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell. Energy, 35(7), 2796-2806.,2010.
    10. Jang, J. Y., Huang, Y. X., & Cheng, C. H. The effects of geometric and operating conditions on the hydrogen production performance of a micro-methanol steam reformer. Chemical Engineering Science, 65(20), 5495-5506.,2010.
    11. Cheng, C. H., Huang, Y. X., King, S. C., Lee, C. I., & Leu, C. H. CFD (computational fluid dynamics)-based optimal design of a micro-reformer by integrating computational a fluid dynamics code using a simplified conjugate-gradient method. Energy, 70, 355-365.,2014.
    12. Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. Review on single-phase fluid flow distribution in manifold. Int. J. Sci. Res.(IJSR), 3(1), 325-330., 2014.
    13. Hassan, J. M., Mohammed, W. S., Mohamed, T. A., & Alawee, W. H. CFD Simulation for Manifold with Taperedlongitudinal Section. International Journal of Emerging Technology and Advanced Engineering, 4(2), 28-35., 2014.
    14. Hassan, J. M., Mohamed, T. A., Mohammed, W. S., & Alawee, W. H. Modeling the uniformity of manifold with various configurations, Journal of Fluids . Vol.2014, 1-8, 2014.
    15. Facão, J. Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements. Solar Energy, 120, 104-112.,2015.
    16. Huang, C. H., Wang, C. H., & Kim, S. A manifold design problem for a plate-fin microdevice to maximize the flow uniformity of system. International Journal of Heat and Mass Transfer, 95, 22-34., 2016.
    17. Çetkin, E. Constructal Microdevice Manifold Design With Uniform Flow Rate Distribution by Consideration of the Tree-Branching Rule of Leonardo da Vinci and Hess–Murray Rule. Journal of Heat Transfer, 139(8), 082401.,2017.
    18. Zhao, C., Yang, J., Zhang, T., Yan, D., Pu, J., Chi, B., & Li, J. Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack. International Journal of Hydrogen Energy, 42(10), 7003-7013.,2017.
    19. Saffman, P. G. On the rise of small air bubbles in water. Journal of Fluid Mechanics, 1(3), 249-275., 1956.
    20. Clift R, Grace, J R, Weber, M E. Bubbles, Drops and Particles. Academic Press, New York, 120-321,1978.
    21. Bhaga, D., & Weber, M. E. Bubbles in viscous liquids: shapes, wakes and velocities. Journal of fluid Mechanics, 105, 61-85., 1981.
    22. Grace, J. R. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Chem. Eng. Res. Des., 54, 167-173. ,1976.
    23. Grace, J. R. Hydrodynamics of liquid drops in immiscible liquids. Handbook of Fluids in Motion, 38., 1983.
    24. Duineveld, P. C. The rise velocity and shape of bubbles in pure water at high Reynolds number. Journal of Fluid Mechanics, 292, 325-332., 1995.
    25. TSUGE, H., & HIBINO, S. I. The onset conditions of oscillatory motion of single gas bubbles rising in various liquids. Journal of Chemical Engineering of Japan, 10(1), 66-68., 1997.
    26. Krishna, R., & Van Baten, J. M. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments. International communications in heat and mass transfer, 26(7), 965-974., 1999.
    27. Oddie, G., Shi, H., Durlofsky, L. J., Aziz, K., Pfeffer, B., & Holmes, J. A. Experimental study of two and three phase flows in large diameter inclined pipes. International Journal of Multiphase Flow, 29(4), 527-558., 2003.
    28. Wu, R. Z., Shu, D., Sun, B. D., Wang, J., & Lu, Y. L. Observation and theoretic analysis of gas-bubble formation and growth in water-model. Transactions of Nonferrous Metals Society of China, 15(5), 1130-1137., 2005.
    29. Philippe, M., Jérôme, H., Sebastien, B., & Gérard, P. Modelling and calculation of the current density distribution evolution at vertical gas-evolving electrodes. Electrochimica Acta, 51(6), 1140-1156.,2005.
    30. LI Z., CHAO Y., CAO Z.. Numerical simulation of a bubble rising in shear-thinning fluids. Journal of Non-Newtonian Fluid Mechanics, 165(11-12), 555-567., 2010.
    31. ZHU R..,LI Y.,NI Y.,HOU Y.. Numerical simulation of bubble rising in the water [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 5, 002., 2010.
    32. PETER L, FRANZ P, NICOLAS F, PETER E. Gas bubbles in simulation and experiment. Journal of colloid and interface science, 354(1), 364-372., 2011.
    33. Van Doormaal, J. P., & Raithby, G. D. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical heat transfer, 7(2), 147-163., 1984

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE