簡易檢索 / 詳目顯示

研究生: 林彥呈
Lin, Yen-Cheng
論文名稱: 衛星影像正射幾何校正使用非線性映射函數
Orthorectification of Optical Satellite Imagery Using Nonlinear Mapping Function
指導教授: 林昭宏
Lin, Chao-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 57
中文關鍵詞: 幾何校正最小二乘配置法徑向基函數光學衛星影像
外文關鍵詞: geometry correction, least square collocation (LSC), radial basis function (RBF), optical satellite imagery
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衛星影像正射化校正流程的目的在於使影像表現出正確的地表幾何形狀,並且使影像能夠與其他地圖套疊。影像正射化可分為光線追蹤(top-down)及逆轉換(bottom-up)兩種方法,本研究採用逆轉換,利用有理函數模型(rational function model, RFM)表示物像關係。衛星會透過載體的星曆資料解算出RFM所需的參數,描述三維大地坐標和二維衛星像元坐標之間的關係。RFM以兩個三階多項式函數相除的形式呈現大地坐標和像元坐標之間的轉換,並透過此關係式進行影像正射化流程。然而該轉換在處理部分案例時,僅用三階多項式組成的有理函數模型依然不足以描述細微幾何形變。這類變形可能因衛星定位不精確、衛星軌道振盪以及大氣狀況等因素產生,導致最終正射影像套疊不準確,產生如地物位移、形狀扭曲等現象。本研究提出了一套影像正射化的改善流程,透過在RFM後插入非線性的映射模型,使流程可以分別藉由RFM捕捉全域誤差,以及非線性映射模型捕捉局部誤差。對於非線性映射模型,研究中評估了三種不同函數:兩種最小二乘配置法(least squares collocation, LSC)和一種徑向基函數(radial basis function, RBF),前者藉由協變方矩陣、後者藉由核函數的線性組合來捕捉局部變形。由於這三種函數複雜性較高而使得計算所需資源及時間增加,故本研究引入了兩種加速技術:GPU加速和網格化策略,前者藉由平行運算提高硬體的使用效率;後者減少冗餘的計算量且同時維持幾何穩定性,大幅提高模型效率。在有雲影像、衛星軌道定位不精確的案例中,傳統使用最小二乘來重新解算RFM的方法其檢核點精度會達8個像素,而使用本研究提出的改善流程其檢核點精度可少於2個像素。此外,在整合前述加速策略後,計算一張衛星影像坐標轉換的所需時間由3天進步到少於30秒,時間效率提高了95%以上。

    The purpose of the satellite image orthorectification process is to render the images to correctly represent the geometric features of the Earth's surface, thereby enabling them to overlay with other maps. Two principal methodologies can be used for this purpose: ray-tracing (top-down) and inverse transformation (bottom-up). This study adopted the inverse transformation approach, using the rational function model (RFM) to represent object-image relationships. Satellite carrier ephemeris data were utilized to calculate the parameters required by RFM, thus defining the relationship between 3D geodetic coordinates and 2D satellite pixel coordinates. RFM employs a quotient of two cubic polynomial functions to represent the transformation between geodetic and pixel coordinates, which then forms the basis for the orthorectification process. However, in handling certain cases, the RFM, composed only of cubic polynomials, still falls short in describing subtle geometric deformation. This deformation can be induced by factors such as imprecise satellite positioning, satellite orbital fluctuation, and atmospheric condition, which may cause inaccuracies in the final orthoimage overlay, resulting in phenomena such as object displacement and shape distortion.
    In response to this, this study proposes an improved orthorectification process, which inserting a non-linear mapping model after RFM, enabling the capture of global errors via RFM and local errors via the non-linear mapping model. For the non-linear mapping model, three different functions were evaluated: two least squares collocation (LSC) and one radial basis function (RBF), the former using covariance matrices, and the latter using a linear combination of kernel functions to capture local deformation. Due to the high complexity of these three functions, they require increased computational resources and time. Therefore, two acceleration techniques were introduced in this research: GPU acceleration and gridding strategy. The former leverages parallel computation to enhance hardware utilization, while the latter reduces redundant computations while maintaining geometric stability, thus significantly improving model efficiency. In cases involving cloud images and imprecise satellite orbit positioning, the traditional method of using least squares to re-generate RFM yields a checkpoint accuracy of up to 8 pixels. However, using the improved process proposed in this research, the checkpoint accuracy can be reduced to less than 2 pixels. Moreover, after integrating the acceleration strategies, the time required for the coordinate transformation of a single satellite image has been reduced from 3 days to less than 30 seconds, resulting in a time efficiency improvement of over 95%.

    摘要 i Abstract ii 致謝 iv Table of Contents v Table of Tables vii Table of Figures viii Chapter 1 Introduction 1 1.1 Geometric Modeling of Distortions 1 1.2 Motivation and Objectives 4 1.3 Basic Information of Satellite Images 6 1.4 Contribution 6 Chapter 2 Related Works 8 2.1 Geometry Adjustment of Satellite Imagery 8 2.1.1 The Rational Function Model 8 2.1.2 RFM Regeneration 9 2.2 Least Squares Collocation 9 2.2.1 Hello World in Least-Squares Collocation 10 2.2.2 Customization of Covariance Function 10 2.2.3 Application: Coordinate Transformation 11 2.3 Radial Basis Function 12 Chapter 3 Materials and Methods 13 3.1 Least Squares Collocation 13 3.1.1 Basic Theory 13 3.1.2 Covariance Function 15 3.1.3 Prediction and Mapping 18 3.2 Radial Basis Function 19 3.3 Acceleration Strategy 22 Chapter 4 Experiment Results and Discussion 24 4.1 Dataset 25 4.2 Gridding: The Acceleration Strategy 26 4.3 The Choice of Noise Factor 27 4.4 Model Evaluation 28 4.4.1 Error Estimation 29 4.4.2 Computational Cost 36 4.4.3 Visual Evaluation of Orthoimage 36 4.5 Influence of Data Pooling 41 4.5.1 Evaluation of Mapping Functions 41 4.5.2 LSC_II Test with n = 50 44 Chapter 5 Conclusion 50 Reference 51 Appendix 54

    Ayoub, F., Leprince, S., Binet, R., Lewis, K. W., Aharonson, O., & Avouac, J.-P. (2008). Influence of camera distortions on satellite image registration and change detection applications. IGARSS 2008 (pp. 1072-1075). Boston, MA: IEEE.
    Bay, H., Tuytelaars, T., & Gool, L. V. (2006). SURF: Speeded Up Robust Features. European Conference on Computer Vision, 404–417.
    Bookstein, F. (1989). Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 567 - 585.
    Cao, J., & Fu, J. (2018). Estimation of rational polynomial coefficients based on singular value decomposition. Journal of Applied Remote Sensing, 044003.
    Chen, L. C., Teo, T. A., & Liu, C. L. (2006). The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images. Photogrammetric Engineering & Remote Sensing, 573–579.
    Daniel DeTone, T. M. (2018). SuperPoint: Self-Supervised Interest Point Detection and Description. CVPR 2018 Deep Learning for Visual SLAM Workshop. Salt Lake City.
    Edward M. Mikhail, F. A. (1976). Observations and Least Squares. New York.
    Fraser, C. S., & Hanley, H. B. (2003). Bias Compensation in Rational Functions for. Photogrammetric Engineering & Remote Sensing, 53-57.
    III, C. F., Sloan, P.-P. J., & Cohen, M. F. (2001). Artist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics Forum, 239-250.
    Jack. (2018, 12 10). griddataLSC. Retrieved from MathWorks: https://www.mathworks.com/matlabcentral/fileexchange/57342-griddatalsc
    Joglekar, J., & Gedam, S. S. (2012). Area Based Image Matching Methods – A Survey. International Journal of Emerging Technology and Advanced Engineering, 130-136.
    Kodur, S. (2019). Lexisearch for Modeling Pushbroom Imaging Systems. ISCSIC 2019 (pp. 1–6). Amsterdam, Netherlands: Association for Computing Machinery.
    Krarup, T. (2006). A Contribution to the Mathematical Foundation of Physical Geodesy. In K. Borre, Mathematical Foundation of Geodesy (pp. 29-90). Heidelberg, Berlin: Springer.
    Kratky, V. (1989). Rigorous photogrammetric processing of SPOT images at CCM Canada. ISPRS Journal of Photogrammetry and Remote Sensing,, 53-71.
    Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 91–110.
    Moritz, H. (1980). Advanced Physical Geodesy. Karlsruhe, West Germany: Herbert Wichmann.
    Patino, J. E., & Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 1-17.
    Poli, D., & Toutin, T. (2012). Review of developments in geometric modelling for high resolution satellite pushbroom sensors. The Photogrammetric Record, 58-73.
    Rampal, K. K. (1976). Least Squares Collocation in Photogrammetry. Photogrammtric Engineering and Remote Sensing, 659-669.
    Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. International Conference on Computer Vision (pp. 6-13). Barcelona, Spain: IEEE .
    Ruffhead, A. (1987). An Introduction to Least-Squares Collocation. Survey Review, 85-94.
    Sarlin, DeTone, Malisiewicz, Rabinovich, Zurich, & Magic Leap, I. (2020). SuperGlue: Learning Feature Matching with Graph Neural Networks. CVPR 2020.
    Sommervold, O., Gazzea, M., & Arghandeh, R. (2023). A Survey on SAR and Optical Satellite Image Registration. Remote Sensing, 850.
    Teo, T. A., & Chen, L. C. (2003). Geometric Correction for EROS A High Resolution Satellite Images. Journal of Photogrammetry and Remote Sensing, 73-94.
    Teo, T. A., & Chen, L. C. (2007). Geometric Correction of High Resolution Satellite Image via Rational Function Model. Journal of Photogrammetry and Remote Sensing, 257-272.
    ToitduWilna. (2008). Radial Basis Function Interpolation [Master dissertation, University of Stellenbosch]. CORE.
    Tong, X., Liu, S., & Weng, Q. (2010). Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 218-226.
    Toutin, T. (2004). Review article: Geometric processing of remote sensing images: Models, algorithms and methods. International Journal of Remote Sensing, 1893-1924.
    Tscherning, C. C. (2015). Developments in the Implementation and Use of Least-Squares Collocation. In IAG 150 Years (pp. 199–204). Potsdam, Germany: Springer.
    Wright, G. B. (2003). Radial basis function interpolation: Numerical and analytical developments. ProQuest Dissertations Publishing.
    Xi, Z., & Panoutsos, G. (2018). Interpretable Machine Learning: Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules. International Conference on Intelligent Systems (pp. 448-454). Funchal, Portugal: IEEE.
    You, R. J., & Hwang, H. W. (2006). Coordinate Transformation between Two Geodetic Datums of Taiwan by Least-Squares Collocation. Journal of Surveying Engineering, 132, 64-70.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE