| 研究生: |
胡哲嘉 Hu, Che-chia |
|---|---|
| 論文名稱: |
鹼金屬鉭酸鹽光觸媒之結晶結構與分解水反應性的關聯 Correlation between Crystalline Structure and Photocatalytic Activity of Alkali Tantalates |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 鉭酸鉀 、鉭酸鈉 、分解水 、光觸媒 |
| 外文關鍵詞: | Water splitting, KTaO3, Photocatalyst, K2Ta2O6, NaTaO3 |
| 相關次數: | 點閱:98 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
擁有適當能帶位置的鉭酸鹽光觸媒,對於光分解水有相當好的活性,而且以鹼金族鉭酸鹽又有高分解水反應性及良好的穩定性,因此常被應用於光照分解水反應。在本研究中,我們分別以不同方法合成出鉭酸鈉及鉭酸鉀光觸媒,以期增加傳統固相法合成光觸媒的反應活性。
本研究第一部份,是利用傳統固相法(Solid-State method)製備正交晶相(Orthorhombic phase)直接能隙,鉭-氧-鉭(Ta-O-Ta)鍵角為163°的鈣鈦礦(Perovskite type)鉭酸鈉(NaTaO3)觸媒;而本研究以溶膠凝膠法(Sol-gel method)在較低溫下(500°C)製備具有間接能隙、屬於單斜晶相(Monoclinic phase),鉭-氧-鉭(Ta-O-Ta)鍵角為接近180°的鉭酸鈉。在經過各種物理及化學性質的鑑定後,發現Sol-Gel NaTaO3具有較大比表面積、較適當的能帶位置及結晶結構,因此在紫外光的照射下,相較於Solid-State NaTaO3,Sol-Gel NaTaO3也就具有較優異的分解水活性。
另外,為了確定鍵角對分解水反應性的影響,本研究並以水熱法合成正立方晶系的鉭酸鈉觸媒,擁有Ta-O-Ta鍵角為180°的鉭酸鈉,在單位比表面積的產氫量下,是優於溶膠凝膠法及固相法合成的鉭酸鈉觸媒。
在第二部份,我們同樣利用溶膠凝膠法、固相法及水熱法製備焦綠石礦(Pyrochlore type)及鈣鈦礦(Perovskite type)的鉭酸鉀氧化物(Potassium tantalate),而較低溫合成的K2Ta2O6因為其能隙較大、氧化還原電位較適當、較大的比表面積,因此有比KTaO3還優越的光分解水活性。另外,K2Ta2O6的單位比表面積產氫量,也是優於以上方法所合成之NaTaO3光觸媒。
關鍵字:鉭酸鈉、鉭酸鉀、光觸媒、分解水
Abstract
Tantalates have suitable band edge levels for catalytically decomposing water into H2 and O2 under illumination. Among different types of tantalates, alkaline tantalates showed promising water-splitting ability and chemical stability. In the present work, we synthesized sodium and potassium tantalates from different methods, in an attempt to promote the photocatalytic activity.
Perovskite-like NaTaO3 photocatalyst powders were generally synthesized with a solid-state method, which formed the orthorhombic phase that has a direct band gap and a Ta-O-Ta bond angle of ca. 163°. The present work reported a sol-gel synthesis, in which NaTaO3 nanoparticles were obtained at a temperature as low as 500°C by using sodium acetate and tantalum chloride as the starting materials and citric acid as the complexing agent. Because of the low-temperature condition used in synthesis, the sol-gel NaTaO3 was of the monoclinic phase that has an indirect band gap, high densities of states near the band edges, and a Ta-O-Ta bond angle close to 180°. Concerning the surface area as well as the electronic and crystalline structures, the sol-gel NaTaO3 was considered favorable to photocatalytic reactions in comparison with the solid-state one. This interpretation was supported by the finding that the sol-gel NaTaO3 exhibited a remarkably higher photocatalytic activity in water splitting than the solid-state one.
To assure the influence of the Ta-O-Ta bond angle, we synthesized Cubic-phase NaTaO3 particles from a hydrothermal route which have a bond angle of 180°. This hydrothermal-synthesis NaTaO3 showed a higher activity in water splitting than the sol-gel and solid-state ones.
Potassium tantalates were synthesized by sol-gel, solid-state, and hydrothermal method. Pyrochlore like K2Ta2O6 was formed at lower temperatures (<700°C) and perovskite-like KTaO3 at higher temperatures. The present work found that the K2Ta2O6 powder with higher surface area and larger redox overpotentials was more active for water-splitting in comparison with the KTaO3 powders. The photocatalytic activity (per unit area) of K2Ta2O6 was higher than those of all the NaTaO3 powders shown above.
Keywords: NaTaO3, K2Ta2O6, KTaO3, photocatalyst, water splitting.
參考文獻
1. 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”, 協志工業叢書印行, 2000.
2. 藤嶋昭, 本多健一, 菊池真一, “工業化學”, 1969, 72, 108.
3. A. Fujishima, K. Honda, Nature 1972, 238, 37.
4. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commun. 2001, 2416.
5. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348.
6. A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 2004, 33, 1534.
7. R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052.
8. M. Gratzel, Nature 2001, 414, 338.
9. A. Kudo, Catal. Surv. Asia 2003, 31, 7
10. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, J. Phys. Chem. B 2001, 105, 10893.
11. Y. Matsumoto, U. Unsl, N. Tanaka, A. Kudo, H. Kato, J. Solid State Chem. 2004, 177, 4205.
12. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, J. Phys. Chem. B 1999, 103, 1.
13. A. Kudo, H. Kato, Chem. Phys. Lett. 2000, 331, 373.
14. H. Kato, A. Kudo, J. Phys. Chem. B 2001, 105, 4285
15. H. Kato, H. Kobayashi, A. Kudo. J. Phys. Cehm. B 2002, 106, 12441.
16. H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
17. A. Yamakata, T. Ishibashi, H. Kato, A. Kudo, H. Onishi, J. Phys. Chem. B 2003, 107, 14383.
18. Y. He, Y. Zhu, N. Wu, J. Solid State Chem. 2004, 177, 3868.
19. A. Iwase, H. Kato, H. Okutomi, A. Kudo, Chem. Lett. 2004, 33, 1260.
20. W. H. Lin, C. Cheng, C. C. Hu, H. Teng, Appl. Phys. Lett. 2006, 89, 1.
21. D. G. Porob, P. A. Maggard, J. Solid State. Chem. 2006, 179, 1727.
22. K. Domen, S. Naito, T. Onishi, K. Tamaru, J. Phys. Chem. 1982, 86, 3657.
23. M. A. Pena, J. L. G. Fierro, Chem. Rev. 2001, 101, 1981.
24. M. Machida, J. Yabunaka, T. Kihima, Chem. Commun. 1999, 1939.
25. H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
26. A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 2000, 104, 571.
27. M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 2000, 12, 812.
28. H. Kato, A. Kudo, J. Photochem. Photobio. A: Chem. 2001, 145, 129.
29. K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, Y. Kitayama, Chem. Lett. 2002, 1158.
30. M. Yoshino, M. Kakihana, Chem. Mater. 2002, 14, 3369.
31. M. Machida, K. Miyazaki, S. Matsushima, M. Arai, J. Mater. Chem. 2003, 13, 1433.
32. J. Ye, Z. Zou, A. Matsushita, Int. J. Hydrogen Energ. 2003, 28, 651.
33. T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, Y. Takita, J. Photochem. Photobio. A: Chem. 2004, 167, 149.
34. D. F. Li, N. Xu, Y. F. Chen, Z. G. Zou, Res. Chem. Intermed. 2005, 31, 521.
35. K. I. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater. 2005, 17, 5161.
36. S. Ikeda, M. Fubuki, Y. K. Takahara, M. Matsumura, Appl. Catal. A: General 2006, 300, 186.
37. R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 2219.
38. T. Xu, X. Zhao, Y. Zhu, J. Phys. Chem. B 2006, 110, 25825.
39. A. Jerez, M. L. Lopez, S. Garcia-Martin, M. L. Veiga, C. Pico. J. Mater. Sci. 1991, 26, 5163.
40. J. Isasi, M. L. Lopez, M. L. Veiga, E. Ruiz-Hitzky, C. Pico, J. Solid State Chem. 1995, 116, 290.
41. J. Isasi, M. L. Lopez, M. L. Veiga, C. Pico, Solid State Ionic 1996 89, 321.
42. J. B. Thomson, A. R. Armstrong, P. G. Bruce, Chem. Commun. 1996, 1165.
43. R. Siddharthan, B. S. Shastry, A. P. Ramirez, A. Hayashi, Phys. Rev. Lett. 1999, 83, 1854.
44. N. L. Wang, J. J. McGuire, T. Timusk, R. Jin, J. He, D. Mandrus, Phys, Rev. B 2002, 66, 014534.
45. N. L. Wang, G. H. Cao, P. Zheng, G. Li, Z. Fang, T. Xiang, H. Kitazawa, T. Matsumoto, Phys. Rev. B 2004, 69, 153104.
46. P. Zheng, N. L. Wang, J. L. Luo, Phys. Rev. B 2004, 69, 193102.
47. Q. Zhou, B. J. Kennedy, V. Ting, R. L. Withers, J. Solid State Chem. 2005, 178, 1575.
48. G. R. Lumpkin, M. Pruneda, S. Rios, K. L. Smith, K. Trachenko, K. R. Whittle, N. J. Zaluzec, J. Solid State Chem. 2007, 180, 1512.
49. N. Duan, Z. R. Tian, W. S. Willis, S. L. Suib, J. M. Newsam, S. M. Levine, Inrog. Chem. 1998, 37, 4697.
50. G. K. L. Goh, S. M. Haile, C. G. Levi, F. F. Lange, J. Mater. Re. 2002, 17, 3168.
51. V. Leute, Solid State Ionics 1985, 17, 185.
52. W. J. Dawson, Ceram. Bull. 1988, 67, No.10.
53. 陳寶丞, “以溶膠凝膠法製備用於一氧化氮還原反應之奈米級觸媒”, 國立成功大學化學工程學系碩士論文, 2001.
54. B. Jirhennsons, M. E. Staumanis, McMillan Co. New York 1962.
55. 陳慧英, “溶膠凝膠法在薄膜製備上之應用”, 化工技術, 1999, 80.
56. J. Livage, M. Henry, “Ultrastructure Processing of Advanced Ceramics”, Wiley, New York, 1988, 183.
57. D. C. Bradley, R. C. Mehrotra, D. P. Gaur, Academic Press, London, 1978.
58. J. Zarzycki, J. Phalipon, J. Mater. Sci. 1982, 17, 3371.
59. C. J. Binker, G. W. Scherer, J. Non-Cryst. Solids 1985, 70, 301.
60. D. A. Tryk, A. Fujishima, K. Honda, Electro. Acta 2000, 45, 2363.
61. S. Licht, J. Phys. Chem. B 2003, 107, 4253.
62. A. Galinska, J. Walendziewski, Energy & Fuels 2005, 19, 1143.
63. J. Zhou, Y. Zhang, X. S. Zhao, A. K. Ray, Ind. Eng. Chem. Res. 2006, 45, 3503.
64. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C 2007, 111, 693.
65. R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 2004, 108, 8992.
66. T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobio. A: Chem. 2004, 163, 181.
67. R. Niishiro, H. Kato, A. Kudo, Phys. Chem. Chem. Phys. 2005, 7, 2241.
68. D. Wang, J. Ye, T. Kako, T. Kinura, J. Phys. Chem. B 2006, 110, 15824.
69. H. Irie, Y. Maruyama, K. Hashimoto, J. Phys. Chem. C 2007, 111, 1847.
70. A. Kudo, I. Tsuji, H. Kato, Chem. Commun. 2002, 1958.
71. I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 2004, 126, 13406.
72. I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 2005, 44, 3365.
73. I. Tsuji, H. Kato, A. Kudo, Chem. Mater. 2006, 18, 1969.
74. A. Kudo, K. Ueda, H. Kato, I. Midami, Catal. Lett. 1998, 53, 229.
75. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 1999, 121, 11459.
76. S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 2001, 13, 4624.
77. M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys. 2002, 117, 7313.
78. L. Zhang, D. Chen, X. Jiao, J. Phys. Chem. B 2006, 110, 2668.
79. K. Sayaam, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 11352.
80. H. Kominami, K. Oki, M. Kohno, S. I. Onoue, Y. Kera, B. Ohtani, J. Mater. Chem. 2001, 11, 604.
81. E. L. Miller, R. E. Rocheleau, X. M. Deng, Int. J. Hydrogen Energ. 2003, 28, 615.
82. H. Hayashi, Y. Hakuta, Y. Kurata, J. Mater. Chem. 2004, 14, 2046.
83. N. G. Dhere, A. H. Jahagirdar, Thin Solid Films 2005, 480, 462.
84. Y. Ebina, N. Sakai, T. Sasaki, J. Phys, Chem. B 2005, 109, 17212.
85. J. J. Zou, C. J. Liu, Y. P. Zhang, Langmuir, 2006, 22, 2334.
86. A. Iwase, H. Kato, A. Kudo, Catal. Lett. 2006, 108, 7.
87. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 2006, 110, 17790.
88. J. Wu, Y. Cheng, J. Lin, Y. Huang, M. Huang, . Hao, J. Phys. Chem. C 2007, 111, 3624.
89. T. Kako, Z. Zou, M. Katagiri, J. Ye, Chem. Mater. 2007, 19, 198.
90. H. Kato, A. Kudo, Chem. Phys. Lett. 1998, 295, 487.
91. Z. Zou, H. Arakawa, J. Photochem. Photobio. A: Chem. 2003, 158, 145.
92. V. M. Aroutiounian, V. M. Arakelyan, G. E. hahnazaryan, Solar Energy, 2005, 78, 581.
93. A. Kudo, Int. J. Hydrogen Energ. 2006, 31, 197.
94. D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature Commun. 2006, 440, 295.
95. Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 2000, 332, 271.
96. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature Lett. 2001, 414, 625.
97. M. Machida, S. Murakami, T. Kijima, J. Phys. Chem. B 2001, 105, 3289.
98. K. Sayama, H. Arakawa, K. Domen, Catal. Today 1996, 28, 175.
99. A. Kudo, H. Kato, Chem. Lett. 1997, 867.
100. A. Kudo, H. Okutomi, H. Kato, Chem. Lett. 2000, 1212.
101. Y. Takahara, J. N. Kondo, D. Lu, K. Domen, Solid State Ionics 2002, 151, 305.
102. G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 2002, 1698.
103. H. Kato, A. Kudo, Phys. Chem. Chem. Phys. 2002, 4, 2833.
104. M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B 2005, 109, 7801.
105. K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, J. Catal. 2005, 232, 102.
106. T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo, H. Onishi, J. Phys. Chem. B 2006, 110, 7883.
107. T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 2006, 35, 274.
108. M. Yashima, Y. Lee, K. Domen, Chem. Mater. 2007, 19, 588.
109. H. Kato, A. Kudo, Catal. Today 2003, 78, 561.
110. S. D. Ross, J. Phys. C: Solid St. Phys. 1970, 3, 1785.
111. T. G. Davis, Phys. Rev. B 1972, 5, 2530.
112. M. Wiegel, W. Middel, G. Blasse, J. Mater. Chem. 1995, 5, 981.
113. A. M. Srivastava, J. F. Ackerman, J. Solid State Chem. 1997, 134, 187.
114. A. Kudo, E. Kaneko, J. Mater. Sci. Lett. 1997, 16, 224.
115. A. Kudo, Chem. Mater. 1997, 9, 664.
116. B. Li, F. Koch, L. Chu, Appl. Phys. Lett. 2001, 78, 1107.
117. 謝嘉民, 賴一凡, 林永昌, 枋志堯, “光激發螢光量測的原理、架構及應用”, 奈米通訊, 2005, 12, 28.
118. C. H. Wen, S. Y. Chu, Y. Y. Shin, C. K. Wen, Japan J. Appl. Phys. 2006, 45, 5812.
119. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
120. B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction”, 3rd ed., Prentice Hall, 2001.
121. M. Yan, F. Chem. J. Zhang, M. Anpo, J. Phys. Chem. B 2005, 109, 8673.
122. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, J. Phys. Chem. B 1999, 103, 630.
123. 陳力俊,“材料電子顯微鏡”, 精密儀器發展中心, 1999.
124. S. Brunaller, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 390.
125. 陳俊吉, “金屬氧化物半導體在可見光分解水製氫之研究”國立成功大學化學工程學系碩士論文, 2005.
126. I. G. Ismailzade, Kristallografiya, 1962, 7, 718.
127. M. Ahtee, C. N. W. Darlington, Acta Cryst. 1980, B36, 1007.
128. D. E. Scaife, Solar Energy 1980, 25, 41.
129. B. J. Kennedy, A. K. Prodjosantoso, C. J. Howard, J. Phys.: Condens. Matter. 1999, 11, 6319.