簡易檢索 / 詳目顯示

研究生: 嚴千智
Yen, Chien-Chih
論文名稱: 無鉛銲錫知識庫之建立與Sn-8.5Zn-0.5Ag -0.1Al-0.5Ga合金抽線性及機械性質之研究
The establishment of lead-free solder knowledge-based system and study on the formability and mechanical properties of Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 77
中文關鍵詞: 無鉛銲錫知識庫錫線抗拉強度成型性
外文關鍵詞: Tensile strength, formability, lead-free solder, solder wire, knowledge-based system
相關次數: 點閱:139下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   無鉛銲錫相關之知識日新月異,為了達到更有效率的學習,一個架構清晰且使用方便的知識庫有其必要性。本研究以知識管理為出發點,將目前已經發表在文獻上之無鉛銲錫系統彙整成為一有系統的知識庫,並以網頁的形式來呈現此知識庫。此外,本研究也針對具有發展潛力之Sn-Zn-Ag-Al-Ga五元無鉛銲錫合金,進行抽線性與機械性質加以探討。

      本研究所建立知識庫之架構主要由十一個項目所組成,首先將無鉛銲錫分為二元、三元、四元、五元與多元無鉛銲錫合金系統五個項目,接下來則為銲錫合金之性質比較圖、二元合金系統之相圖、世界無鉛銲錫專利表、重要名詞之解釋、單位換算之功能以及參考資料等六個項目,並且在知識庫內提供一搜尋系統讓使用者能夠快速地查詢無鉛銲錫合金之性質。與其他的學習管道比較,本知識庫網站不僅便於增修、更新與擴充,並將所蒐集之無鉛銲錫性質製作成圖表,讓使用者能夠快速地對不同成分之無鉛銲錫合金性質作比較。本研究所開發之搜尋系統則具備快速查詢的功能,能夠針對特定合金系統之特定性質作快速搜尋,也能夠一次對所有銲錫合金之特定性質作搜尋,如此大大地增加使用者的學習效率。

      在五元無鉛銲錫合金方面,本研究著重於將Sn-Zn-Ag-Al-Ga合金抽線製成錫線,來探討合金之抽線成型性、抗拉強度、顯微組織與破裂模式。研究結果發現,只要抽線程序的設計恰當,其抽線成型性是相當不錯的。拉伸測試結果發現此合金的抗拉強度與伸長率皆優於鉛-錫合金,可將此合金製成線材來取代鉛-錫合金,但此線材產生的兩層結構使得手銲過程相當不便,在製作的程序上仍有改良的空間,如大量氣孔使其整體性質變差,因此後續五元合金製作成鑄錠到抽線的過程中須加上除氣的程序,以確保線材有良好的機悈性質,產品有穩定的一致性。

      There are constantly new technologies and information generated in the field of Lead-free solder. In order to extract knowledge effectively, we need a knowledge-based system with a clear structure. In this thesis research, a lead-free solder knowledge-based system has been constructed in the form of web-sites. Besides, the formability for wire drawing and mechanical properties of Sn-Zn-Ag-Al-Ga solder alloy is also analyzed in this study.

      The knowledge-based system in this study is composed of eleven parts, which are 2-elements, 3-elements, 4-elements, 5-elements, multi-elements lead-free solder alloys and properties contrast diagram, two phase diagram, worldwide solder patents, items explanation, unit transformation and references. The knowledge-based system also provides a search system for users to search data efficiently. Compared with other ways of knowledge acquisition, this system is more easily to be modified and updated. The property contrast diagrams help users to compare properties of different solder alloys more easily. The search system can search a specific property of one solder system, and it also can search a property of all solder system in knowledge-based system. This function can improve the learning efficiency.

      This study focuses on the formability of the Sn-Zn-Ag-Al-Ga alloy for wire drawing to produce solder wire. It is found that through proper design of the wire drawing process, the solder wire of this particular alloy can be successfully drawn. The tensile tests reveal that the tensile strength and elongation of the Sn-Zn-Ag-Al-Ga are better than those of the Sn-Pb alloy. However, the wires are found to have the double-core structure, where the outer layer is very brittle. It is then concluded that degassing is required during the preparation of the ingots, which are subsequently drawn to wires of desired dimensions.

    中文摘要………………………………………………………………Ⅰ 英文摘要................................................Ⅱ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 第一章 緒論...............................................1 第二章 文獻回顧...........................................5 2.1 傳統鉛錫合金與無鉛銲錫...............................5 2.2 無鉛銲錫之重要基本性質...............................6 2.2.1 物理性質...........................................6 2.2.1.1 熔點.............................................6 2.2.1.2 熱膨脹係數.......................................6 2.2.1.3 表面張力.........................................7 2.2.1.4 電阻係數.........................................7 2.2.1.5 微結構...........................................7 2.2.1.6 銲錫與基材之界面反應.............................8 2.2.2 機械性質..........................................10 2.2.2.1 剪切強度........................................10 2.2.2.2 伸長率..........................................11 2.2.2.3 抗潛變性........................................11 2.2.3 化學性質..........................................11 2.2.3.1 氧化行為........................................11 2.2.3.2 抗腐蝕性........................................12 2.3 常見無鉛銲錫合金系統................................12 2.3.1 Sn-Ag合金系統.....................................12 2.3.2 Sn-Bi合金系統.....................................13 2.3.3 Sn-Cu合金系統.....................................14 2.3.4 Sn-In合金系統.....................................14 2.3.5 Sn-Zn合金系統.....................................15 2.3.6 Sn-Au合金系統.....................................16 2.3.7 Sn-Sb 合金系統....................................16 第三章 Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga合金之抽線性與機械性質..28 3.1 實驗方法 28 3.1.1 抽線製作研究用Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga銲錫線材..28 3.1.2 Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga銲錫線材抗拉強度之測試..28 3.1.3 Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga銲錫線材之顯微組織之觀察30 3.1.4 建立不同成份之錫線的破裂模式......................32 3.2 結果與討論..........................................32 3.2.1 抽線成型性........................................32 3.2.2 線材的拉伸強度測試與伸長率量測....................33 3.2.3 破斷面觀察........................................34 3.2.4 微結構與應用......................................35 第四章 知識庫系統操作介面的設計..........................49 4.1 網頁設計的軟體工具..................................49 4.1.1 FrontPage.........................................50 4.1.2 Dreamweaver.......................................50 4.2 美工與影像處理......................................52 第五章 使用範例..........................................56 5.1 查詢無鉛銲錫之性質..................................56 5.2 性質比較圖..........................................56 5.3 名詞解釋............................................57 5.4 相圖與單位換算......................................57 5.5 世界各國專利表與參考資料............................57 5.6 查詢系統............................................58 第六章 總結..............................................73 第七章 未來工作..........................................74

    1.K. I. Chen and K. L. Lin, “The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys-the effect of Ag”, Journal of Electronic Materials 2002, Vol. 31, Iss. 8, pp. 861-867.

    2.S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari and K. Matsushige, “Strength of bonding interface in lead-free Sn alloy solders”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001, Vol. 319, pp. 475-479.

    3.M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical strength and microstructure of BGA joints using lead-free solders”, Materials Transactions 2002, Vol. 43, Iss 8, pp. 1802-1807.

    4.C. M. L. Wu and M. L. Huang, “Creep behavior of eutectic Sn-Cu lead-free solder alloy ”, Journal of Electronic Materials 2002, Vol. 31, Iss 5, pp. 442-448.

    5.洪敏雄, 游善溥, “電子構裝用無鉛銲錫”, 科儀新知第二十卷二期.

    6.C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, “Improvements of microstructure, wettability, tensile and creep strength of eutectic Sn-Ag alloy by doping with rare-earth elements”, Journal of Materials Research 2002, Vol.
    17, Iss. 12, pp. 3146-3154.

    7.P. L. Liu and J. K. Shang, “Interfacial segregation of
    bismuth in copper/tin-bismuth solder interconnect”, Scripta Materialia 2001, Vol. 44, Iss 7, pp. 1019-1023.

    8.50. H. W. Miao and J. G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Materials Chemistry and Physics 2001, Vol. 71, Iss. 3, pp. 255-271.

    9.C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, “The effect of Bi concentration on wettability of Cu substrate by Sn-Bi solders”, Materials Transactions 2001, Vol. 42, Iss. 5, pp. 751-755.

    10.P. L. Liu and J. K. Shang, “Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect”, Scripta Materialia 2001, Vol. 44, Iss. 7, pp. 1019-1023.

    11.S. H. Huh, K. S. Kim and K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder ”, Materials Transactions 2001, Vol. 42, Iss. 5, pp. 739-744.

    12.N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino and I. Yonezu, “Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes”, Journal of Power Sources 2002, Vol. 107, Iss. 1, pp. 48-55.

    13.J. W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, Journal of the Materials, July 1993, pp. 25-27.

    14.J. M. Song, G. F. Lan, T.S. Lui and L. H. Chen, “Microstructure and tensile properties of Sn-9Zn-xAg lead-free solder alloys”, Scripta Materialia, Vol. 48, No. 8, Apr. 14, 2003, pp. 1047-1051.

    15.D. G. Ivey, “Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications”, Micron 1998, Vol. 29, Iss. 4, pp. 281-287.

    16.W. Sun and D. G. Ivey, “Development of an electroplating solution for codepositing Au-Sn alloys”, Materials Science and Engineering B-Solid State Materials for Advanced Technology 1999, Vol. 65, Iss. 2, pp. 111-122.

    17.United States Patent, No. 6179935 B1, Jan. 30, 2001.

    18.United States Patent, No. 6241942 B1, Jun. 5, 2001.

    19.詹益淇, 莊東漢, “無鉛銲錫的回顧與最新發展”, 電子月刊第六卷第三期, pp. 226-237.

    20.D. B. Knorr and L. E. Felton, “Designing Lead-free Solder Alloys for Advanced Electronics Assembly”, Proceedings of the 1994 Design for Manufacturability Conference, ASME N.Y. , New York, pp. 27-34.

    21.ASM Handbook, Vol. 3, Alloy Phase Diagrams, pp. 25-383.

    22.林怡伶, “積體電路中薄膜材料即其製程知識庫之建立”, 成功大學碩士論文, 2003.

    23.洪敏雄主編, “工程材料實驗(I)-金屬材料實驗”, 中國材料科學學會.

    24.施威銘研究室, “Dreamweaver MX2004魔法書”, 旗標出版股份有限公司, 2004.

    25.小正正, “Dreamweaver MX2004 資料庫網站中文版”, 上奇出版社, 2004.

    下載圖示 校內:2005-07-15公開
    校外:2005-07-15公開
    QR CODE