| 研究生: |
黃永蒼 Huang, Yung-Tsang |
|---|---|
| 論文名稱: |
嗜中性白血球明膠酶相關脂質運載蛋白NGAL在肺癌進展過程調控第九型基質金屬蛋白酵素MMP-9的活性 Neutrophil gelatinase-associated lipocalin modulates Matrix metalloproteinase-9 activity in lung cancer progression |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | MMP-9 、NGAL 、雙硫鍵 、轉移 、肺癌 |
| 外文關鍵詞: | NGAL, MMP-9, Disulfide bond, Metastasis, Lung cancer |
| 相關次數: | 點閱:344 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣肺癌的患者一直都是癌症十大死因之冠,盡管現在有化學藥物療法與標靶藥物,也有新開發的免疫療法來治療並減緩病情,但肺癌的五年存活率仍不到百分之十五。至目前為止主要肺癌造成死亡的主因,是肺癌轉移,癌轉移造成其他器官或組織形成轉移的肺癌細胞;主要癌轉移會透過癌細胞分泌出基質金屬蛋白酵素 (Matrix metalloproteinases, MMPs) 去分解細胞外基質,而造成癌細胞進入到循環系統,再轉移到其他器官或組織形成癌轉移;在分解細胞外基質時,癌細胞主要會分泌許多種基質金屬蛋白酵素 (MMPs),其中第九型基質金屬蛋白酵素 (MMP-9) 最被重視及廣泛研究,這些酵素會造成癌細胞的侵犯能力增強。但會影響MMP-9活性且與MMP-9交互作用的蛋白質如嗜中性白血球明膠酶相關脂質運載蛋白 (Neutrophil gelatinase-associated lipocalin, NGAL) 的機制其實還有許有未解開的謎團。NGAL是一個運載蛋白,最原本的在病原菌感染時,NGAL會藉由抓住鐵離子的siderophere來抑制病原菌的生長,但過去也有許多研究發現在癌症中,NGAL往往是過度表現的狀態,影響了發炎、癌細胞的轉移等等。我們首先發現NGAL在低濃度的狀況下,會影響肺癌細胞的移動與侵犯能力,但不影響增生能力。而除了過去研究推測MMP-9會藉由雙硫鍵與NGAL交互作用外,因為老鼠的Lcn2在序列上與NGAL上的Cysteine 107的序列並不同,我們也藉由不同物種,發現老鼠的Lcn2 (同NGAL) 與MMP-9之間也有交互作用,藉此告訴我們NGAL中的Cysteine與MMP-9交互作用且形成複合物的能力各有不同。
所以我們接著以不同突變型分別為C96V、C107V、C195V、雙突變與參突變的NGAL,發現在Cysteine 195對於MMP-9交互作用所形成複合物的比例增加許多,且參突變的NGAL是不會與MMP-9交互作用的。在過去也指出當MMP-9與NGAL形成複合物後,會讓MMP-9影響癌細胞的移動能力與侵犯能力也會增強,所以我們進一步發現以突變的NGAL與MMP-9形成的複合物直接處理肺癌細胞,NGAL Cysteine 195突變型除了會抑制NGAL原本影響的侵犯能力,也降低MMP-9所給予增加肺癌細胞的移動與侵犯能力。
對於突變型的NGAL在活體內的實驗目前還在進行當中,但對於抑制肺癌轉移的影響,我們的確在肺癌細胞內實驗看到了明顯降低的作用,也許對於未來開發藥物或設計新的蛋白質抑制物,突變型的NGAL都可能是一個重要且具潛力的標的蛋白,且提高肺癌患者存活率的新治療策略。
Matrix metalloproteinase-9 (MMP-9) is one of crucial proteinases involved in cancer metastasis through the degradation of extracellular matrix. Although the neutrophil gelatinase-associated lipocalin (NGAL) /MMP-9 complex is increased in malignant cancers, the role of NGAL in MMP-9-mediated cancer malignancy still needs to be elucidated. NGAL involve in the innate immune system to limit pathogen proliferation, while NGAL also highly expresses in malignant cancers. In this study, the role of NGAL in cancer formation was studied in vitro and in vivo. In in vitro experiments indicated that NGAL can’t alter the cell proliferation. On the other hand, in in vivo data show that NGAL treatment inhibits tumor formation, implying that NGAL might modulate tumor-associated microenvironment to repress lung cancer formation in vivo. Next, we studied the interaction mechanism(s) between NGAL and MMP-9. Since both of NGAL and MMP-9 contain many disulfide bonds. We hypothesized that inter- or intra-molecular disulfide bonds might play an important role in regulating the interaction of NGAL and MMP-9. Therefore, various mutants were built in NGAL including C96V, C107V, C195V, double mutation and triple mutation for studying the interaction between NGAL and MMP-9. Data indicated that NGAL-C96V and NGAL-C96V/C107V increase the NGAL dimerization and NGAL/MMP-9 complex, suggesting that loss of C96 or C107 thereby unveil C195 is important for NGAL dimerization and NGAL/MMP-9 complex formation. Finally, the effects of the NGAL and its mutants in MMP-9-mediated metastasis were characterized. All the results in migration and invasion assays reveal that loss of C195, NGAL-C195V, dramatically repress the metastasis ability. In conclusion, NGAL secreted out of neutrophil is involved in lung cancer progression through the interaction with MMP-9, and residue, C195, of NGAL might play a crucial role. NGAL-C195V can be as a potential candidate for development of cancer drug in the future.
Ågren, M. (1994). "Gelatinase activity during wound healing." British Journal of
Dermatology 131(5): 634-640.
Bauvois, B. (2012). "New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell
surface transducers: outside-in signaling and relationship to tumor progression." Biochim Biophys Acta 1825(1): 29-36.
Berger, T., et al. (2010). "Disruption of the Lcn2 gene in mice suppresses primary
mammary tumor formation but does not decrease lung metastasis." Proc Natl Acad Sci U S A 107(7): 2995-3000.
Bouchet, S. and B. Bauvois (2014). "Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias." Cancers 6(2): 796-812.
Brahmer, J. R. (2014). "Immune checkpoint blockade: the hope for immunotherapy as a treatment of lung cancer?" Semin Oncol 41(1): 126-132.
Bouchet, S. and B. Bauvois (2014). "Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias." Cancers 6(2): 796-812.
Bu, D.-x., et al. (2006). "Induction of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-κB." The American journal of pathology 169(6): 2245-2253.
Chakraborty, S., et al. (2012). "The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer." Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1826(1): 129-169.
Choi, J., et al. (2011). "Increased plasma levels of lipocalin 2 in mild cognitive impairment." J Neurol Sci 305(1-2): 28-33.
Devarajan, P. (2010). "Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury." Biomarkers 4(2): 265-280.
Du, Z. P., et al. (2015). "Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop." Biochim Biophys Acta 1853(10 Pt A): 2240-2250.
Duellman, T., et al. (2015). "Functional Roles of N-Linked Glycosylation of Human Matrix Metalloproteinase 9." Traffic 16(10): 1108-1126.
Egeblad, M. and Z. Werb (2002). "New functions for the matrix metalloproteinases in cancer progression." Nat Rev Cancer 2(3): 161-174.
Ferreira, A. C., et al. (2015). "From the periphery to the brain: Lipocalin-2, a friend or foe?" Prog Neurobiol 131: 120-136.
Flo, T. H., et al. (2004). "Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron." Nature 432(7019): 917-921.
Flower, D. R. (1996). "The lipocalin protein family: structure and function." Biochemical Journal 318(1): 1-14.
Friedl, A., et al. (1999). "Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression." The Histochemical journal 31(7): 433-441.
Gettinger, S. N., et al. (2015). "Overall Survival and Long-Term Safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer." J Clin Oncol 33(18): 2004-2012.
Goetz, D. H., et al. (2002). "The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition." Molecular cell 10(5): 1033-1043.
Hsu, T. I., et al. (2015). "MMP7-mediated cleavage of nucleolin at Asp255 induces MMP9 expression to promote tumor malignancy." Oncogene 34(7): 826-837.
Huang, H., et al. (1999). "Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period." Journal of Endocrinology 162(1): 11-19.
Hu, L., et al. (2009). "NGAL decreases E-cadherin-mediated cell–cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells." Laboratory Investigation 89(5): 531-548.
Kessenbrock, K., et al. (2010). "Matrix metalloproteinases: regulators of the tumor microenvironment." Cell 141(1): 52-67.
Kjeldsen, L., et al. (1993). "Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase." Journal of Biological Chemistry 268(14): 10425-10432.
Lochter, A., et al. (1998). "The significance of matrix metalloproteinases during early stages of tumor progression." Annals of the New York Academy of Sciences 857(1): 180-193.
Longo, D. L., et al. (2012). Harrison's Principles of Internal Medicine 18E Vol 2 EB, McGraw Hill Professional.
Marques, F., et al. (2012). "Lipocalin 2 is present in the EAE brain and is modulated by natalizumab." Front Cell Neurosci 6: 33.
Mustafa, M., et al. "Lung Cancer: Risk Factors, Management, And Prognosis."
Olson, M. W., et al. (2000). "Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9 differential rates for activation by stromelysin 1." Journal of Biological Chemistry 275(4): 2661-2668.
Page-McCaw, A., et al. (2007). "Matrix metalloproteinases and the regulation of tissue remodelling." Nat Rev Mol Cell Biol 8(3): 221-233.
Provatopoulou, X., et al. (2009). "Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease." BMC cancer 9(1): 390.
Reilly, P. T., et al. (2013). "Lipocalin 2 performs contrasting, location-dependent roles in APCmin tumor initiation and progression." Oncogene 32(10): 1233-1239.
Ricard-Blum, S. (2011). "The collagen family." Cold Spring Harb Perspect Biol 3(1): a004978.
Rodvold, J. J., et al. (2012). "Lipocalin 2 in cancer: when good immunity goes bad." Cancer Lett 316(2): 132-138.
Roeb, E., et al. (2002). "The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist." J Biol Chem 277(52): 50326-50332.
Roy, R., et al. (2009). "Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer." J Clin Oncol 27(31): 5287-5297.
Sorokin, L. (2010). "The impact of the extracellular matrix on inflammation." Nature Reviews Immunology 10(10): 712-723.
Stamenkovic, I. (2000). Matrix metalloproteinases in tumor invasion and metastasis. Seminars in cancer biology, Elsevier.
Tallant, C., et al. (2010). "Matrix metalloproteinases: fold and function of their catalytic domains." Biochim Biophys Acta 1803(1): 20-28.
Tong, Z., et al. (2008). "Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer." Cancer Res 68(15): 6100-6108.
van Zijl, F., et al. (2011). "Initial steps of metastasis: cell invasion and endothelial transmigration." Mutat Res 728(1-2): 23-34.
Visse, R. and H. Nagase (2003). "Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry." Circ Res 92(8): 827-839.
Voulgari, A. and A. Pintzas (2009). "Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic." Biochim Biophys Acta 1796(2): 75-90.
Yan, L., et al. (2001). "The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL." J Biol Chem 276(40): 37258-37265.
Zervantonakis, I. K., et al. (2012). "Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function." Proc Natl Acad Sci U S A 109(34): 13515-13520.
申哲洙, et al. (2003). "基质金属蛋白酶 9 及其复合物在乳腺癌患者尿中的表达." 中华外科杂志 41(11): 817-817.
邱曉娸 (2013). "犬泌尿道疾病尿中 NGAL 之分子型態與濃度變化." 中興大學獸醫學系暨研究所學位論文: 1-67.