| 研究生: |
李嘉蓉 Lee, Jia-Rong |
|---|---|
| 論文名稱: |
Clec4a2是腫瘤治療的新標的 A New Therapeutic Target: Clec4a2 |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 癌症免疫療法 、基因槍 、樹突狀細胞 |
| 外文關鍵詞: | Clec4a2, dendritic cell |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症免疫療法是繼傳統手術、化療與放射線療法之後的新興療法,主要是利用提昇病人自身的免疫能力來對抗腫瘤,並降低副作用。我們的研究策略是希望藉由抑制負向調控免疫作用的分子來提升免疫反應以對抗腫瘤。為此,我們利用已建立的腫瘤小鼠模式與干擾性核醣核酸的技術來建立一個新平台,用以系統性地篩選出對腫瘤治療有療效的shRNA。首先我們將針對特定分子所購得的三株shRNA做等量混合後遞送到帶有腫瘤的小鼠腹部,並發現其中clec4a2 shRNA對小鼠腫瘤生長能形成最佳的抑制效果。由體外實驗發現,這些產生療效的腫瘤小鼠淋巴球,對腫瘤細胞有較高的細胞型毒殺活性。由於此療效是使用混合的clec4a2 shRNA所觀察到的,因此接下來我們便針對個別shRNA做研究:在利用西方墨點法確認了三株shRNA個別抑制效果後,我們分別將這三株clec4a2 shRNA遞送至小鼠體內,並觀察到其中clec4a2-1 shRNA和clec4a2-3 shRNA能抑制腫瘤的生長。由機制方面去探討,發現在clec4a2-1 shRNA和clec4a2-3 shRNA治療的小鼠淋巴球,對腫瘤細胞具有較高的細胞型毒殺活性。而由免疫組織化學染色的實驗得知,這些產生療效的小鼠在腫瘤部份具有較多的CD4+與CD8+ 淋巴球浸潤。最後在外送clec4a2基因的補償實驗中,我們更進一步證實此療效是由於遞送的clec4a2 shRNA抑制了小鼠體內clec4a2基因表現所導致。
Cancer immunotherapy, contrasted with traditional tumor therapy, is a new strategy to give rise to the immune response of patients oneself and destroy the tumor cells without the unwanted side-effects. One of the fast and efficient approaches of cancer immunotherapy is to inhibit the molecules which play a negative role in anti-tumor immunity. Utilizing an established animal model and the RNAi technique, we design a platform to find the potential therapeutic shRNA against negative regulator of dendritic cell by systematic screening. At first, we deliver mixed three shRNA into the abdomen of tumor-bearing mice and observe the tumor curve. The data show that mice treated with clec4a2 shRNA demonstrating the best therapeutic effect and inducing higher cytotoxic activity in lymphocyte. To analyse individual shRNA further, we check clec4a2 shRNA knockdown efficacy and then separately deliver three shRNA to tumor-bearing mice. Observing the tumor curve, mice which treated with clec4a2-1 shRNA and clec4a2-3 shRNA show the better therapeutic effect. To investigate the possible mechanism, the therapeutic effect is caused of enhanced cytotoxic activity in lymphocyte and more CD4+ and CD8+ lymphocyte infiltration in tumor part. Finally, we validate the therapeutic effect by compensating the shRNA-treated mice for clec4a2 gene.
1.行政院衛生署 (2010),民國98年死因結果摘要表。取自網址http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=11122&class_no=440&level_no=3
2.Fukuoka, M., S. Yano, G. Giaccone, T. Tamura, K. Nakagawa, J. Y. Douillard, Y. Nishiwaki, J. Vansteenkiste, S. Kudoh, D. Rischin, R. Eek, T. Horai, K. Noda, I. Takata, E. Smit, S. Averbuch, A. Macleod, A. Feyereislova, R. P. Dong and J. Baselga (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 21(12): 2237-46.
3.Kris, M. G., R. B. Natale, R. S. Herbst, T. J. Lynch, Jr., D. Prager, C. P. Belani, J. H. Schiller, K. Kelly, H. Spiridonidis, A. Sandler, K. S. Albain, D. Cella, M. K. Wolf, S. D. Averbuch, J. J. Ochs and A. C. Kay (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama 290(16): 2149-58.
4.Waldmann, T. A. (2003). Immunotherapy: past, present and future. Nat Med 9(3): 269-77.
5.Knutson, K. L., B. Almand, D. A. Mankoff, K. Schiffman and M. L. Disis (2002). Adoptive T-cell therapy for the treatment of solid tumours. Expert Opin Biol Ther 2(1): 55-66.
6.Puri, R. K. and J. P. Siegel (1993). Interleukin-4 and cancer therapy. Cancer Invest 11(4): 473-86.
7.Giarelli, E. (2007). Cancer vaccines: a new frontier in prevention and treatment. Oncology (Williston Park) 21(11 Suppl Nurse Ed): 11-7; discussion 18.
8.Steinman, R. M. and J. Banchereau (2007). Taking dendritic cells into medicine. Nature 449(7161): 419-26.
9.Lu, S., S. Wang and J. M. Grimes-Serrano (2008). Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7(2): 175-91.
10.Harzstark, A. L. and E. J. Small (2009). Immunotherapeutics in development for prostate cancer. Oncologist 14(4): 391-8.
11.Lin CC, Y. M., Lin CM, Huang SS, Yang HJ, Chow NH, Lai MD. (2008). Delivery of noncarrier naked DNA vaccine into the skin by supersonic flow induces a polarized T helper type 1 immune response to cancer. J Gene Med 10(6): 679–689.
12.Lin, C. C., C. W. Chou, A. L. Shiau, C. F. Tu, T. M. Ko, Y. L. Chen, B. C. Yang, M. H. Tao and M. D. Lai (2004). Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 10(2): 290-301.
13.Stevenson, F. K., C. H. Ottensmeier, P. Johnson, D. Zhu, S. L. Buchan, K. J. McCann, J. S. Roddick, A. T. King, F. McNicholl, N. Savelyeva and J. Rice (2004). DNA vaccines to attack cancer. Proc Natl Acad Sci U S A 101 Suppl 2: 14646-52.
14.Melillo, J. A., L. Song, G. Bhagat, A. B. Blazquez, C. R. Plumlee, C. Lee, C. Berin, B. Reizis and C. Schindler Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol 184(5): 2638-45.
15.Yen, M. C., C. C. Lin, Y. L. Chen, S. S. Huang, H. J. Yang, C. P. Chang, H. Y. Lei and M. D. Lai (2009). A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin Cancer Res 15(2): 641-9.
16.Takeshita, F. and T. Ochiya (2006). Therapeutic potential of RNA interference against cancer. Cancer Sci 97(8): 689-96.
17.Bates, E. E., N. Fournier, E. Garcia, J. Valladeau, I. Durand, J. J. Pin, S. M. Zurawski, S. Patel, J. S. Abrams, S. Lebecque, P. Garrone and S. Saeland (1999). APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J Immunol 163(4): 1973-83.
18.Fujikado, N., S. Saijo, T. Yonezawa, K. Shimamori, A. Ishii, S. Sugai, H. Kotaki, K. Sudo, M. Nose and Y. Iwakura (2008). Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 14(2): 176-80.
19.Yoshimura, A., T. Naka and M. Kubo (2007). SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6): 454-65.
20.Yoshimura, A., H. Nishinakamura, Y. Matsumura and T. Hanada (2005). Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther 7(3): 100-10.
21.Evel-Kabler, K., X. T. Song, M. Aldrich, X. F. Huang and S. Y. Chen (2006). SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116(1): 90-100.
22.Auffermann-Gretzinger, S., I. S. Lossos, T. A. Vayntrub, W. Leong, F. C. Grumet, K. G. Blume, K. E. Stockerl-Goldstein, R. Levy and J. A. Shizuru (2002). Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 99(4): 1442-8.
23.Evel-Kabler, K. and S. Y. Chen (2006). Dendritic cell-based tumor vaccines and antigen presentation attenuators. Mol Ther 13(5): 850-8.
24.Galli, S. J., M. Grimbaldeston and M. Tsai (2008). Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8(6): 478-86.
25.Corinti, S., C. Albanesi, A. la Sala, S. Pastore and G. Girolomoni (2001). Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol 166(7): 4312-8.
26.Kortylewski, M., M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, H. Kay, J. Mule, W. G. Kerr, R. Jove, D. Pardoll and H. Yu (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12): 1314-21.
27.Catlett-Falcone, R., T. H. Landowski, M. M. Oshiro, J. Turkson, A. Levitzki, R. Savino, G. Ciliberto, L. Moscinski, J. L. Fernandez-Luna, G. Nunez, W. S. Dalton and R. Jove (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1): 105-15.
28.Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12): 941-52.
29.Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4): 263-74.
30.Bissell, M. J. and D. Radisky (2001). Putting tumours in context. Nat Rev Cancer 1(1): 46-54.
31.Yu, H., M. Kortylewski and D. Pardoll (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1): 41-51.
32.Nefedova, Y. and D. I. Gabrilovich (2007). Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets 7(1): 71-7.
33.Bierie, B. and H. L. Moses (2006). TGF-beta and cancer. Cytokine Growth Factor Rev 17(1-2): 29-40.
34.Li, M. O., S. Sanjabi and R. A. Flavell (2006). Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25(3): 455-71.
35.Travis, M. A., B. Reizis, A. C. Melton, E. Masteller, Q. Tang, J. M. Proctor, Y. Wang, X. Bernstein, X. Huang, L. F. Reichardt, J. A. Bluestone and D. Sheppard (2007). Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449(7160): 361-5.
36.Figdor, C. G., Y. van Kooyk and G. J. Adema (2002). C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2): 77-84.
37.Hsu, F. J., C. Benike, F. Fagnoni, T. M. Liles, D. Czerwinski, B. Taidi, E. G. Engleman and R. Levy (1996). Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1): 52-8.
38.Markowicz, S. and E. G. Engleman (1990). Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J Clin Invest 85(3): 955-61.
39.Stingl, G. (1990). Dendritic cells of the skin. Dermatol Clin 8(4): 673-9.
40.Kim, T. W., C. F. Hung, M. Ling, J. Juang, L. He, J. M. Hardwick, S. Kumar and T. C. Wu (2003). Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 112(1): 109-17.
41.Steinbrink, K., M. Wolfl, H. Jonuleit, J. Knop and A. H. Enk (1997). Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10): 4772-80.
42.Ryan, J. C. and W. E. Seaman (1997). Divergent functions of lectin-like receptors on NK cells. Immunol Rev 155: 79-89.
43.Roth, M. D., B. J. Gitlitz, S. M. Kiertscher, A. N. Park, M. Mendenhall, N. Moldawer and R. A. Figlin (2000). Granulocyte macrophage colony-stimulating factor and interleukin 4 enhance the number and antigen-presenting activity of circulating CD14+ and CD83+ cells in cancer patients. Cancer Res 60(7): 1934-41.
44.Koya, R. C., T. Kimura, A. Ribas, N. Rozengurt, G. W. Lawson, E. Faure-Kumar, H. J. Wang, H. Herschman, N. Kasahara and R. Stripecke (2007). Lentiviral vector-mediated autonomous differentiation of mouse bone marrow cells into immunologically potent dendritic cell vaccines. Mol Ther 15(5): 971-80.
45.Basak, S. K., A. Harui, M. Stolina, S. Sharma, K. Mitani, S. M. Dubinett and M. D. Roth (2002). Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 99(8): 2869-79.